
A Fast and Robust GJK Implementation for
Collision Detection of Convex Objects

GINO VAN DEN BERGEN

Department of Mathematics and Computing Science
Eindhoven University of Technology
P.O. Box 513, 5600 MB Eindhoven

The Netherlands
E-mail: gino@win.tue.nl

July 6, 1999

Abstract

This paper presents an implementation of the Gilbert-Johnson-Keerthi
algorithm for computing the distance between convex objects, that has im-
proved performance, robustness, and versatility over earlier implementa-
tions. The algorithm presented here is especially fit for use in collision de-
tection of objects modeled using various types of geometric primitives, such
as boxes, cones, and spheres, and their images under affine transformation,
for instance, as described in VRML.

1 Introduction

The Gilbert-Johnson-Keerthi distance algorithm (GJK) is an iterative method for
computing the distance between convex objects [9]. The attractiveness of GJK
lies in its simplicity, which makes it fairly easy to implement, and its applicability
to general convex polytopes [8].

This paper presents a GJK that has improved performance, robustness, and
versatility over earlier implementations [13, 3]. The performance improvements
are the result of: (a) data caching and smarter selection of sub-simplices in the

1

GJK subalgorithm, (b) early termination on finding a separating axis, in the appli-
cation of GJK to intersection detection, and (c) exploitation of frame coherence
by caching the separating axis. With these improvements, our GJK implemen-
tation detects intersections between convex polyhedra roughly five times faster
than the implementation of the Lin-Canny closest-feature algorithm [10] used in
I-COLLIDE [7]. Regarding robustness, we present a solution to a termination
problem in the original GJK due to rounding errors, which was noted by Na-
gle [11]. Finally, regarding versatility, we show how GJK can be applied to a
large family of geometric primitives, which includes boxes, spheres, cones and
cylinders, and their images under affine transformation, thus demonstrating the
usefulness of GJK for collision detection of objects described in VRML [2].

The GJK implementation presented in this paper is incorporated in the Soft-
ware Library for Interference Detection (SOLID) version 2.0. The C++ source
code for our GJK implementation is also released as a separate package called
GJK-engine1.

The rest of this paper is organized as follows. Section 2 describes the gen-
eral GJK distance algorithm. Readers already familiar with this algorithm may
safely skip this section. Section 3 discusses the application of GJK on a num-
ber of convex primitives and their images under affine transformation. Section 4
discusses the performance improvements of our implementation. And finally, Sec-
tion 5 shows what causes the numerical problems of GJK and how to tackle these
problems.

2 Overview of GJK

This section describes the extended GJK for general convex objects, first presented
in [8]. Readers unfamiliar with the concepts and notations used here are referred
to Appendix A.

The GJK algorithm computes the distance between a pair of convex objects.
Thedistancebetween objectsA andB, denoted byd(A, B), is defined by

d(A, B) = min{‖x − y‖ : x ∈ A, y ∈ B}.
The algorithm can be tailored to return a pair of closest points, which is a pair of
pointsa ∈ A andb ∈ B for which‖a − b‖ = d(A, B).

1The GJK-engine source code as well as information on obtaining the com-
plete C++ source code and documentation for SOLID 2.0 is available online at
http://www.acm.org/jgt/papers/vanDenBergen99/.

2

We express the distance betweenA and B in terms of their Minkowski sum
A − B as

d(A, B) = ‖v(A − B)‖,

wherev(C) is defined as the point inC nearest to the origin, i.e.,

v(C) ∈ C and ‖v(C)‖ = min{‖x‖ : x ∈ C}.
Clearly, fora ∈ A andb ∈ B a pair of closest points, we havea− b = v(A− B).

GJK is essentially a descent method for approximatingv(A − B) for convex
A and B. In each iteration a simplex is constructed that is contained inA − B
and lies nearer to the origin than the simplex constructed in the previous iteration.
We defineWk as the set of vertices of the simplex constructed in thek-th iteration
(k ≥ 1), andvk asv(conv(Wk)), the point in the simplex nearest to the origin.
Initially, we takeW0 = ∅, andv0, an arbitrary point inA − B. SinceA − B is
convex andWk ⊆ A − B, we see thatvk ∈ A − B, and thus‖vk‖ ≥ ‖v(A − B)‖
for all k ≥ 0.

GJK generates the sequence of simplices in the following way. Letwk =
sA−B(−vk), wheresA−B is a support mapping ofA − B. We takevk+1 =
v(conv(Wk ∪ {wk})), and asWk+1 we take the smallest setX ⊆ Wk ∪ {wk},
such thatvk+1 is contained in conv(X). It can be seen that exactly one suchX
exists, and that it must be affinely independent. Figure 1 illustrates a sequence of
iterations of the GJK algorithm in two dimensions. We refer to [8] for a proof of
global convergence of the sequence{‖vk‖}.

For polytopes, GJK arrives atvk = v(A − B) in a finite number of iterations,
as shown in [9]. For non-polytopes this may not be the case. For these type of
objects, it is necessary that the algorithm terminates as soon asvk lies within a
given tolerance fromv(A − B). The error ofvk is estimated by maintaining a
lower bound for‖v(A − B)‖. As a lower bound we may take the signed distance
from the origin to the supporting planeH(−vk, vk · wk), which is

δk = vk · wk/‖vk‖.

This is a proper lower bound since for positiveδk, the origin lies in the positive
halfspace, whereasA − B is contained in the negative halfspace of the plane. In
Figure 1 we see thatδk is positive in the cases where the dashed line crosses the
arrow.

3

0
v0

w0

(a)k = 0, W = ∅, δ < 0, µ = 0

0

w0v1

1w

(b) k = 1, W = {w0}, δ < 0, µ = 0

0

w0

1w

v2

w2

(c) k = 2, W = {w0, w1}, δ > 0,
µ = δ

0

w0

1w
w2

v3
w3

(d) k = 3, W = {w0, w2}, δ > 0,
µ unchanged

Figure 1: Four iterations of the GJK algorithm (See Algorithm 1). The dashed
lines represent the support planesH(−vk, vk · wk). The points ofWk are drawn
in black.

4

Contrary to‖vk‖, the lower boundδk may not be monotonic ink, i.e., it is
possible thatδ j < δi for j > i . Furthermore, 0 is a trivial lower bound for
‖v(A − B)‖. Hence, we use

µk = max{0, δ0, . . . , δk}
as a lower bound, which is often tighter thanδk.

A monotonic lower bound is needed for the following reason. For certain con-
figurations of objects (in particular objects that have flat boundary elements),δ is
ill-conditioned, i.e., a small change inv may result in a large change inδ. Since the
computation ofv with finite precision arithmetics inevitably suffers from round-
ing errors, the computed value forδ may be considerably smaller than its actual
value. The relative error inv is larger for setsW that are close to being affinely
dependent, as we will see Section 5. GJK has a tendency to generate simplices
that are progressively more oblong, i.e., closer to being affinely dependent, as the
number of iterations increases. Hence, for largek, the computed values forδk may
be less reliable.

Givenε, a tolerance for the absolute error in‖vk‖, the algorithm terminates as
soon as‖vk‖ − µk ≤ ε. Algorithm 1 presents pseudo-code for the GJK distance
algorithm.

We now focus on the computation ofv = v(conv(Y)) for an affinely indepen-
dent setY and the determination of the smallestX ⊆ Y such thatv ∈ conv(X).
These operations are performed by a single subalgorithm. The requested subset
X = {x0, . . . , xn} of Y is characterized by

v =
n∑

i =0

λi xi where
n∑

i =0

λi = 1 and λi > 0.

This subsetX is the largest of all nonemptyZ ⊆ Y for which eachλi of the point
v(aff(Z)) is positive. The requested pointv is the pointv(aff(X)).

It remains to explain how to find theλi values forv(aff(X)), where X is
affinely independent. We observe that the vectorv = v(aff(X)) is perpendicular
to aff(X), i.e.,v ∈ aff(X) andv·(xi −x0) = 0 for i = 1, . . . , n. Hence, theλi val-
ues are found by solving a system of linear equations. We apply Cramer’s rule to
solve these systems of equations. Since we need to find solutions for all nonempty
subsets ofY, we exploit the recursion in Cramer’s rule. LetY = {y0, . . . , yn},
wheren ≤ d, the dimension of the space. In our case,d = 3. Each nonempty
X ⊆ Y is identified by a nonemptyIX ⊆ {0, . . . , n} such thatX = {yi : i ∈ IX}.

5

Algorithm 1 The GJK distance algorithm

v := “arbitrary point inA − B”;
W := ∅;
µ := 0;
closeenough:= false;
while not closeenoughand v 6= 0 do begin

w := sA−B(−v);
δ := v · w/‖v‖;
µ := max{µ, δ};
closeenough:=‖v‖ − µ ≤ ε;
if not closeenoughthen begin

v := v(conv(W ∪ {w}));
W := “smallestX ⊆ W ∪ {w} such thatv ∈ conv(X)” ;

end
end;
return ‖v‖

We obtain the following recursively defined solutions. For each subsetX, we have
λi = 1i (X)/1(X), where1(X) = ∑

i ∈IX
1i (X), and

1i ({yi }) = 1

1 j (X ∪ {y j }) =
∑
i ∈IX

1i (X)(yi · yk − yi · y j),

where j 6∈ IX andk is an arbitrary but fixed member ofIX, for instancek =
min(IX). The smallestX ⊆ Y such thatv ∈ conv(X) can now be characterized as
the subsetX for which (i) 1i (X) > 0 for eachi ∈ IX, and (ii)1 j (X ∪ {y j }) ≤ 0,
for all j 6∈ IX . The subalgorithm successively tests each nonempty subsetX of
Y until it finds one for which (i) and (ii) hold. In Section 4 we discuss how the
subalgorithm is further optimized in order to improve performance.

Finally, a pair of closest points is computed as follows. At termination, we
have a representation ofv ≈ v(A − B) as

v =
n∑

i =0

λi yi where
n∑

i =0

λi = 1 and λi > 0.

6

Eachyi = pi − qi , wherepi andqi are support points of respectivelyA and B.
Let a = ∑n

i =0 λi pi andb = ∑n
i =0 λi qi . SinceA andB are convex, it is clear that

a ∈ A andb ∈ B. Furthermore, it can be seen thata − b = v. Hence,a andb are
closest points ofA andB.

3 Support Mappings

In order to use GJK on a given class of objects, all we need is a support mapping
for that class. In this section we discuss the computation of the support points for
a number of geometric primitives and their images under affine transformation.

Polytope

The set of polytopes includes simplices (points, line segments, triangles, and tetra-
hedra), convex polygons, and convex polyhedra. For a polytopeA, we may take
sA(v) = svert(A)(v), i.e.,

sA(v) ∈ vert(A) where v · sA(v) = max{v · x : x ∈ vert(A)}.
Obviously, a support point of a polytope can be computed in linear time with
respect to the number of vertices of the polytope. However, it has been mentioned
in a number of publications [4, 5, 3, 12] that by exploiting frame coherence, the
cost of computing a support point of a convex polyhedron can be reduced to almost
constant time. For this purpose, an adjacency graph of the vertices is maintained
with each polytope. Each edge on the polytope is an edge in the graph. In this
way, a support point that lies close to the previously returned support point can
be found much faster using local search. This technique is commonly referred
to ashill climbing. In our implementation, we useQhull [1] for computing the
adjacency graph of a polytope.

Box

A Box primitive is a rectangular parallelepiped centered at the origin and aligned
with the coordinate axes. LetA be a Box with extents 2ηx, 2ηy, and 2ηy. Then,
we take as support mapping forA,

sA((x, y, z)T) = (sgn(x)ηx, sgn(y)ηy, sgn(z)ηz)
T,

where sgn(x) = −1, if x < 0, and 1, otherwise.

7

Sphere

A Sphere primitive is a ball centered at the origin. The support mapping of a
SphereA with radiusρ is

sA(v) =
{ ρ

‖v‖v if v 6= 0
0 otherwise.

Cone

A Cone primitive is a capped cone that is centered at the origin and whose central
axis is aligned with they-axis. LetA be a Cone with a radius ofρ at its base, and
with its apex aty = η and its base aty = −η. Then, the for the top angleα we
have sin(α) = ρ/

√
ρ2 + (2η)2. Let σ = √

x2 + z2, the distance from(x, y, z)T

to they-axis. We choose as support mapping forA, the mapping

sA((x, y, z)T) =



(0, η, 0)T if y > ‖(x, y, z)T‖ sin(α)

(
ρ
σ

x, −η,
ρ
σ

z)T else, ifσ > 0
(0, −η, 0)T otherwise.

Cylinder

A Cylinder primitive is a capped cylinder that again is centered at the origin and
whose central axis is aligned with they-axis. Let A be a Cylinder with a radius
of ρ, and with its top aty = η and its bottom aty = −η. We find as support
mapping forA the mapping

sA((x, y, z)T) =
{

(
ρ
σ

x, sgn(y)η,
ρ
σ

z)T if σ > 0
(0, sgn(y)η, 0)T otherwise.

Affine Transformation

Given a class of objects for which we have a support mapping, the following
theorem yields a method for computing support points for images under affine
transformations of objects of this class.

Theorem 1. Given sA, a support mapping of object A, andT(x) = Bx + c, an
affine transformation, a support mapping forT(A), the image of A underT, is

sT(A)(v) = T(sA(BTv)).

8

Proof. A support mappingsT(A) is characterized by

v · sT(A)(v) = max{v · T(x) : x ∈ A}.
We rewrite the right member of this equation using the following deduction.

v · T(x) = v · Bx + v · c = vTBx + v · c = (BTv)Tx + v · c = (BTv) · x + v · c.

This equation is used in the steps marked by(∗) in the following deduction.

max{v · T(x) : x ∈ A} (∗)= max{(BTv) · x + v · c : x ∈ A}
= max{(BTv) · x : x ∈ A} + v · c

= (BTv) · sA(BTv) + v · c
(∗)= v · T(sA(BTv))

Hence,sT(A)(v) = T(sA(BTv)) is a support mapping ofT(A).

4 Speed

This section presents a fast implementation of the subalgorithm and a collision
detection algorithm derived from the GJK distance algorithm.

Subalgorithm

It is hinted in [9] that by caching and reusing results of dot products, substantial
performance improvement can be obtained. Since some or all vertices inWk reap-
pear inWk+1, many dot products from thek-th iteration are also needed in the
k + 1-th iteration. We will show how this caching of dot products is implemented
efficiently.

In order to minimize the caching overhead, we assign an index number to each
new support point, which is invariant for the duration that the support point is a
member ofWk ∪ {wk}. SinceWk ∪ {wk} has at most four points, and each point
that is discarded will not reappear, we need to cache data for only four points. The
support points are stored in an arrayy. The index of each support point is its array
index. The setWk is identified by a subset of{0, 1, 2, 3}, which is implemented as
a bit-arrayb, i.e.,Wk = {y[i] : b[i] = 1, i = 0, 1, 2, 3}. The index number of the
new support pointwk is the smallesti for which b[i] = 0. Note that a free ‘slot’

9

for wk is always available during iterations, because ifWk has four elements, then
vk = v(conv(Wk)) must be zero, sinceWk is affinely independent, in which case
the algorithm terminates immediately without computing a support point.

The dot products of all pairsy[i], y[j] ∈ Wk ∪ {wk} are stored in a 4× 4 array
d, i.e.,d[i, j] = y[i] ·y[j]. In each iteration, we need to compute the dot products
of the pairs containingwk only. The other dot products are already computed in
previous iterations. For aWk containingn points, this takesn + 1 dot product
computations.

We further improve the performance of the subalgorithm by caching all the
1i (X) values. LetY = Wk ∪ {wk}. For many of theX ⊆ Y, the1i (X) values are
needed in several iterations, and are therefore better cached and reused rather than
recomputed. For this purpose, each subsetX is identified by the integer value of
the corresponding bit-array. For instance, forX = {y[0], y[3]}, we use bit-array
1001, corresponding to integer value 20 + 23 = 9. The values of1i (X) for each
subsetX are stored in a 16× 4 array D. The elementD[x, i] stores the value
of 1i (X), wherex is the integer value corresponding with subsetX. Only the
elementsD[x, i] for which bit i of bit-arrayx is set, are used. Similar to the dot
product computations, we only need to compute, in eachk-th iteration, the values
of 1i (X) for the subsetsX containing the new support pointwk, since the other
values are computed in previous iterations.

Another improvement concerning the subalgorithm is based on the following
theorem.

Theorem 2. For each k-th iteration, where k≥ 1, we havewk ∈ Wk+1.

Proof. Supposewk 6∈ Wk+1, thenv(Wk+1) = v(Wk), and thusvk+1 = vk. But
since‖vk+1‖ < ‖vk‖, this yields a contradiction.

Consequently, only those subsetsX, for which wk ∈ X need to be tested by the
subalgorithm. This reduces the number of subsets from 2n+1 − 1 to 2n, wheren
is the number of elements inWk.

Separating Axis

For deciding whether two objects intersect, we do not need to have the distance
between them. We merely need to know whether the distance is equal to zero or
not. Hence, as soon as the lower bound for the distance becomes positive, the
algorithm may terminate returning a nonintersection. The lower bound is posi-
tive iff vk · wk > 0, i.e., vk is a separating axisof A and B. In general, GJK

10

needs less iterations for finding a separating axis of a pair of nonintersecting ob-
jects than for computing an accurate approximation ofv(A − B). For instance
in Figure 1, the vectorvk is a separating axis for the first time whenk = 2. If
the objects intersect, then the algorithm terminates onvk = 0, returning an inter-
section. Algorithm 2 shows an algorithm for computing a separating axis, which
is derived from the GJK distance algorithm. Besides requiring fewer iterations

Algorithm 2 The GJK separating-axis algorithm

v := “arbitrary vector”;
W := ∅;
repeat

w := sA−B(−v);
if v · w > 0 then return false;
v := v(conv(W ∪ {w}));
W := “smallestX ⊆ W ∪ {w} such thatv ∈ conv(X)” ;

until v = 0;
return true

in case of nonintersecting objects, the separating-axis algorithm performs better
than the distance algorithm for another reason. Notice that the value of‖v‖ is not
needed in the GJK separating-axis algorithm. The computation of‖v‖ involves
evaluating a square root, which is an expensive operation. A single iteration of the
separating-axis algorithm is therefore significantly cheaper than an iteration of the
distance algorithm.

Also, note that in the separating-axis algorithm,v does not need to be initial-
ized by a point inA − B, since the length ofv does not matter. This feature is
convenient for exploiting frame coherence.

Similar to closest-point tracking algorithms, such as the Lin-Canny closest
feature algorithm [10], and Cameron’s Enhanced GJK algorithm [3], an incre-
mental version of the GJK separating-axis algorithm shows almost constant time
complexity per frame for convex objects of arbitrary complexity, if frame coher-
ence is high. The incremental separating-axis GJK algorithm, further referred to
as ISA-GJK, exploits frame coherence by using the separating axis from the pre-
vious frame as initial vector forv. If the degree of coherence between frames is
high, then the separating axis from the previous frame is likely to be a separating
axis in the current frame, in which case ISA-GJK terminates in the first iteration.

11

t = 2

t = 0

t = 1

v’

v

Figure 2: Incremental separating axis computation using ISA-GJK. The separat-
ing axisv from t = 0 is also a separating axis fort = 1. However,v fails to be a
separating axis fort = 2. A new separating axisv′ is computed usingv as initial
axis.

Figure 2 shows the behavior of ISA-GJK for a smoothly moving object. We saw
in Section 3 that a support point can be computed in constant time for quadrics
and, if coherence is high, in nearly constant time for arbitrary polytopes. Hence,
in these cases, ISA-GJK takes nearly constant time per frame.

Experiments show that, in the application of collision detection between con-
vex polyhedra, ISA-GJK is roughly five times faster than Lin-Canny. We did
not find significant differences in accuracy for these experiments. Lin-Canny oc-
casionally misses a collision detected by ISA-GJK, although the differences are
minimal. The results of these experiments are discussed in Appendix B.

5 Robustness

Numbers represented by a machine have finite precision. Therefore, arithmetic
operations will introduce rounding errors. In this section we discuss the implica-
tions of rounding errors for the GJK algorithm, and present solutions to problems
that might occur as a result of these.

12

Termination Condition

Let us review the termination condition‖v‖ − µ ≤ ε of the GJK distance algo-
rithm. We see that for large‖v‖ the rounding error of‖v‖−µk can be of the same
magnitude asε. This may cause termination problems. We solve this problem
by terminating as soon as the relative error, rather than the absolute error, in the
computed value of‖v‖ drops below a tolerance valueε > 0. Thus, as termination
condition we take‖v‖ − µ ≤ ε‖v‖.

Moreover, forv ≈ 0, we see that the right member of the inequality might
underflow and become zero, which in turn will result in termination problems.
This problem is solved by terminating as soon as‖v‖ drops below a toleranceω,
whereω is a small positive number.

We would like to add that our experiments have shown that for quadric objects,
such as spheres and cones, the average number of iterations used for computing
the distance isO(− log(ε)), i.e., the average number of iterations is roughly linear
in the number of accurate digits in the computed distance. For polytopes, the
average number of iterations is usually less than for quadrics, regardless of the
complexity of the polytopes, and is not a function ofε (for small values ofε).

Backup Procedure

The main source of GJK’s numerical problems due to rounding errors is the com-
putation of1i (X). Each nontrivial1i (X) is the product of a number of factors
of the formyi · yk − yi · y j . If yk is almost equal toy j in one of these factors,
i.e., X is close to being affinely dependent, then the value of this factor is close
to zero, in which case the relative rounding error in the machine representation
of this factor may be large due to numerical cancellation. This results in a large
relative error in the computed value of1i (X), causing a number of irregularities
in the GJK algorithm.

One of these irregularities was addressed in the original paper [9]. Due to a
large relative error, the sign of the computed value of1i (X) may be incorrect. As
a result of this, the subalgorithm will not be able to find a subsetX that satisfies
the stated criteria. The original GJK uses a backup procedure to compute the best
subset. Here, the best subset is the subsetX for which each1i (X) is positive and
v(aff(X)) is nearest to the origin.

In our experiments, we observed that, in the degenerate case where the backup
procedure needs to be called, the difference between the best vector returned by
the backup procedure and the vectorvk from the previous iteration is negligible.

13

Hence, considering the high computational cost of executing the backup proce-
dure, we chose to leave it out and return the vector from the previous iteration,
after which GJK is forced to terminate. Should the algorithm continue iterating
after this event, then it will infinitely loop, since each iteration will result in the
same vector being computed.

Ill-conditioned Error Bounds

Despite these precautions, the algorithm may still encounter configurations of ob-
jects that cause it to loop infinitely, as noted by Nagle [11]. This problem may
occur when two polytopes that differ a few orders of magnitude in size are in close
proximity of each other. Due to the difference in size, the Minkowski sum of the
objects has extremely oblong shaped facets. Let us examine a scenario in which
the current simplex conv(W) is an oblong shaped triangle, andv = v(A − B) is
an internal point of the triangle.

First we note that two of the triangle’s vertices lie close to each other. This
may cause a large relative rounding error in the computation of1i (X) for some
subsetsX. Hence, the computed value[v] of v might suffer from this error. Note
that the subalgorithm always computesλi values that are positive and add up to
one. Thus,[v] is also an interior point of the triangle, yet located at some distance
from v. Figure 3(a) depicts the effect of an error in[v]. We see that a small error in
[v] may result in a large error in[‖v‖−µ], the computed error bound of‖v‖. The
algorithm should terminate at this point since the actual‖v‖−µ is zero. However,
the error in[‖v‖−µ] causes the algorithm to continue iterating. Since the support
point w for [v] is already a vertex of the current simplex, the algorithm will find
the same[v] in each following iteration, and thus, will never terminate.

Another problem occurs whenv(A− B) lies close to the diagonal of an oblong
quadrilateral facet inA − B, as depicted in Figure 3(b). Again, the large error
in [‖v‖ − µ] causes the algorithm to continue iterating. Only this time, GJK
alternately returns the diagonal’s opposing verticesw andw′ as support points. In
each iteration, one of the vertices is added to the current simplex and the other
is discarded, and vice versa. The remaining two vertices of the current simplex
are the vertices of the facet lying on the diagonal. We see that for the simplex
containingw, the value[v]′ is computed, which results in the vertexw′ being
added to the current simplex. For the simplex containingw′, the value[v] is
computed, which again will causew to be added to the current simplex.

Both degenerate cases are tackled in the following way. In each iteration, the
support pointwk is tested whether it is a member ofWk−1 ∪ {wk−1}. This can

14

v [v]
µ

w

0

[||v|| -]

(a) Same support point in each iteration

w v [v][v]’

w’

0

(b) Alternating support points

Figure 3: Two problems in the original GJK, resulting from ill-conditioned error
bounds.

15

only be true as a result of one of the degenerate cases. If a degenerate case is
detected, then the algorithm terminates and returns[vk] as the best approximation
of v(A − B) within the precision bounds of the machine.

We have done some extensive bench tests on random input in order to compare
the robustness of our enhanced algorithm with the original GJK. The tests showed
that with this extra termination condition, our algorithm terminates properly for
all tested configurations of polytopes, regardless of the size of the tolerance for
the relative error in the computed distance, whereas the original GJK occasionally
failed to terminate on the same input.

A Convex Analysis Mini-primer

TheMinkowski sum2 of objectsA andB is defined as

A − B = {x − y : x ∈ A, y ∈ B}.
Although the Minkowski sum of a pair of objects is a set of vectors, it is regarded
as a point set. The space of this point set has the zero vector0 as its origin. It can
be shown that ifA andB are convex, thenA − B is also convex.

A support mappingis a functionsC that maps a vector to a point of an objectC,
according to

sC(v) ∈ C and v · sC(v) = max{v · x : x ∈ C}.
The value of a support mapping for a given vector is called asupport point. It can
be shown that the mapping

sA−B(v) = sA(v) − sB(−v)

is a support mapping ofA − B.
Theaffineandconvex hullsof a finite point setX = {x1, . . . , xn} are the sets

of, respectively,affineandconvex combinationsof points inX, denoted by

aff(X) =
{

n∑
i =1

λi xi :
n∑

i =1

λi = 1

}

conv(X) =
{

n∑
i =1

λi xi :
n∑

i =1

λi = 1, λi ≥ 0

}
.

2Although Minkowskidifferenceseems more appropriate, we avoid using this term, since it
is defined differently in many geometry texts, namely as(A∗ − B)∗, i.e., the complement of the
Minkowski sum ofA’s complement andB (shrink one object by the other).

16

The convex hull of a finite point set is called apolytope. A set of points is called
affinely independentif none of the points can be expressed as an affine combina-
tion of the other points. In three-dimensional space, an affinely independent set
has at most four points. Asimplexis the convex hull of an affinely independent
set of points. These points are referred to as theverticesof the simplex. A sim-
plex of one, two, three, and four vertices is, respectively, a point, a line segment,
a triangle, and a tetrahedron.

Forv ∈ IR3 \ {0} andδ ∈ IR, theplane H(v, δ) is a set of points defined by

H(v, δ) = {x ∈ IR3 : v · x + δ = 0}
The vectorv is referred to as anormalof the plane. For‖v‖ = 1, the value ofδ is
thesigned distancefrom H(v, δ) to the origin. The positivehalfspaceof a plane
H(v, δ) is defined as

H+(v, δ) = {x ∈ IR3 : v · x + δ ≥ 0}
The negative halfspaceH−(v, δ) is defined similarly. Obviously, for nonnegative
δ the origin lies in the positive halfspace.

B Empirical Results

In order to compare the performance of ISA-GJK with existing algorithms, we
conducted the following experiment. As benchmark we took the multi-body sim-
ulation from I-COLLIDE [7]. This is a simulation of a number of polyhedra that
move freely inside a cubic space. The number, complexity, density, and transla-
tional and rotational velocities of the objects in the space can be varied in order to
test the algorithms under different settings. The simulation has a simple type of
collision response. It exchanges the translational velocities of each colliding pair
of objects, thus simulating a pseudo-elastic reaction. Objects also bounce off the
walls of the cubic space in order to constrain them inside the space.

Using this benchmark, we compared the performance of ISA-GJK to Lin-
Canny’s. For testing Lin-Canny we used I-COLLIDE [6], whereas for testing ISA-
GJK, we replaced the Lin-Canny test in I-COLLIDE by a C++ implementation of
our ISA-GJK intersection test.

The tests were performed on a Sun UltraSPARC-I (167MHz), compiled using
the GNU C/C++ compiler with ‘-O2’ optimization. As default setting we used 20
objects, each having 20 vertices. The default density was set at 5% of the space

17

0

100

200

300

400

500

600

5 10 15 20 25 30 35 40 45 50

Density (% of volume occupied)

T
im

e
(s

)
Lin-Canny

ISA-GJK

Figure 4: Performance under density variations

being occupied by objects. The translational velocity of an object is expressed in
the percentage of its radius the object is displaced in each frame. The default value
is 5%. The default rotational velocity is 10 degrees per frame. For each setting,
we measured the times for the three algorithms by simulating 50,000 frames.

We experimented with different densities, translational velocities, and rota-
tional velocities. The results of this experiment are shown in Figure 4, 5, and 6.

References

[1] C. B. Barber, D. P. Dobkin, and H. Huhdanpaa. The Quickhull algorithm
for convex hull.ACM Transactions on Mathematical Software, 22:469–483,
1996.

[2] G. Bell, R. Carey, and C. Marrin. VRML97: The Virtual Reality Modeling
Language. http://www.vrml.org/Specifications/VRML97, 1997.

18

0

20

40

60

80

100

120

0 10 20 30 40 50 60 70 80 90 100

Translational velocity (% of object radius / frame)

T
im

e
(s

)

Lin-Canny

ISA-GJK

Figure 5: Performance under translational-velocity variations

0

10

20

30

40

50

60

70

80

90

100

0 10 20 30 40 50 60 70 80 90 100

Rotational velocity (degrees / frame)

T
im

e
(s

)

Lin-Canny

ISA-GJK

Figure 6: Performance under rotational-velocity variations

19

[3] S. Cameron. Enhancing GJK: Computing minimum and penetration dis-
tances between convex polyhedra. InProc. IEEE Int. Conf. on Robotics and
Automation, pages 3112–3117, 1997.

[4] S. A. Cameron and R. K. Culley. Determining the minimum translational
distance between convex polyhedra. InProc. IEEE Int. Conf. on Robotics
and Automation, pages 591–596, 1986.

[5] K. Chung and W. Wang. Quick collision detection of polytopes in virtual
environments. InProc. ACM Symposium on Virtual Reality Software and
Technology, pages 125–131, 1996.

[6] J. Cohen, M. C. Lin, D. Manocha, B. Mirtich, M. K. Ponamgi, and
J. Canny. I-COLLIDE: Interactive and exact collision detection library.
http://www.cs.unc.edu/˜geom/ICOLLIDE.html, 1996. software library.

[7] J. D. Cohen, M. C. Lin, D. Manocha, and M. K. Ponamgi. I-COLLIDE: An
interactive and exact collision detection system for large-scale environments.
In Proc. ACM Symposium on Interactive 3D Graphics, pages 189–196, 1995.

[8] E. G. Gilbert and C.-P. Foo. Computing the distance between general con-
vex objects in three-dimensional space.IEEE Transactions on Robotics and
Automation, 6(1):53–61, 1990.

[9] E. G. Gilbert, D. W. Johnson, and S. S. Keerthi. A fast procedure for comput-
ing the distance between complex objects in three-dimensional space.IEEE
Journal of Robotics and Automation, 4(2):193–203, 1988.

[10] M. C. Lin and J. F. Canny. A fast algorithm for incremental distance compu-
tation. InProc. IEEE Int. Conf. on Robotics and Automation, pages 1008–
1014, 1991.

[11] J. Nagle. GJK collision detection algorithm wanted. posted on the
comp.graphics.algorithmsnewsgroup, Apr. 1998.

[12] C. J. Ong and E. G. Gilbert. The Gilbert-Johnson-Keerthi distance algorithm:
A fast version for incremental motions. InProc. IEEE Int. Conf. on Robotics
and Automation, pages 1183–1189, 1997.

[13] R. Rabbitz. Fast collision detection of moving convex polyhedra. In P. Heck-
bert, editor,Graphics Gems IV, pages 83–109. Academic Press, Boston,
MA, 1994.

20

