A Fast and Robust GJK Implementation for
Collision Detection of Convex Objects

GINO VAN DEN BERGEN

Department of Mathematics and Computing Science
Eindhoven University of Technology
P.O. Box 513, 5600 MB Eindhoven
The Netherlands
E-mail: gino@win.tue.nl

July 6, 1999

Abstract

This paper presents an implementation of the Gilbert-Johnson-Keerthi
algorithm for computing the distance between convex objects, that has im-
proved performance, robustness, and versatility over earlier implementa-
tions. The algorithm presented here is especially fit for use in collision de-
tection of objects modeled using various types of geometric primitives, such
as boxes, cones, and spheres, and their images under affine transformation,
for instance, as described in VRML.

1 Introduction

The Gilbert-Johnson-Keerthi distance algorithm (GJK) is an iterative method for
computing the distance between convex objects [9]. The attractiveness of GJK
lies in its simplicity, which makes it fairly easy to implement, and its applicability
to general convex polytopes [8].

This paper presents a GJK that has improved performance, robustness, and
versatility over earlier implementations [13, 3]. The performance improvements
are the result of: (a) data caching and smarter selection of sub-simplices in the

GJK subalgorithm, (b) early termination on finding a separating axis, in the appli-
cation of GJK to intersection detection, and (c) exploitation of frame coherence
by caching the separating axis. With these improvements, our GJK implemen-
tation detects intersections between convex polyhedra roughly five times faster
than the implementation of the Lin-Canny closest-feature algorithm [10] used in
I-COLLIDE [7]. Regarding robustness, we present a solution to a termination
problem in the original GJK due to rounding errors, which was noted by Na-
gle [11]. Finally, regarding versatility, we show how GJK can be applied to a
large family of geometric primitives, which includes boxes, spheres, cones and
cylinders, and their images under affine transformation, thus demonstrating the
usefulness of GJK for collision detection of objects described in VRML [2].

The GJK implementation presented in this paper is incorporated in the Soft-
ware Library for Interference Detection (SOLID) version 2.0. ThetrGource
code for our GJK implementation is also released as a separate package called
GJK-enginé.

The rest of this paper is organized as follows. Section 2 describes the gen-
eral GJK distance algorithm. Readers already familiar with this algorithm may
safely skip this section. Section 3 discusses the application of GJK on a num-
ber of convex primitives and their images under affine transformation. Section 4
discusses the performance improvements of our implementation. And finally, Sec-
tion 5 shows what causes the numerical problems of GJK and how to tackle these
problems.

2 Overview of GJK

This section describes the extended GJK for general convex objects, first presented
in [8]. Readers unfamiliar with the concepts and notations used here are referred
to Appendix A.

The GJK algorithm computes the distance between a pair of convex objects.
Thedistancebetween objecté& and B, denoted byd(A, B), is defined by

d(A,B) =min{|[x —y| : X € A,y € B}.
The algorithm can be tailored to return a pair of closest points, which is a pair of

pointsa € A andb € B for which|ja— b|| = d(A, B).

1The GJK-engine source code as well as information on obtaining the com-
plete Crt+ source code and documentation for SOLID 2.0 is available online at
http://www.acm.org/jgt/papers/ivanDenBergen99/

2

We express the distance betwe&rand B in terms of their Minkowski sum
A—Bas

d(A, B) = [[v(A—B)ll,
wherev(C) is defined as the point i@ nearest to the origin, i.e.,
v(C) e C and [[v(C)| = min{||X]| : x € C}.

Clearly, fora € Aandb € B a pair of closest points, we hage- b = v(A — B).

GJK is essentially a descent method for approximati(ly — B) for convex
A and B. In each iteration a simplex is constructed that is containe#l in B
and lies nearer to the origin than the simplex constructed in the previous iteration.
We defineW as the set of vertices of the simplex constructed irktie iteration
(k = 1), andvg asv(conyW)), the point in the simplex nearest to the origin.
Initially, we takeWp = @, andvp, an arbitrary point inA — B. SinceA — B is
convex and\, € A — B, we see thaty € A — B, and thug|vk| > |lv(A— B)]||
forallk > 0.

GJK generates the sequence of simplices in the following way. wiket=
sa—B(—Vk), wheresa_g is a support mapping oA — B. We takevy,1 =
v(conMWk U {wg})), and asW1 we take the smallest set < Wi U {wg},
such thatvg. 1 is contained in coniX). It can be seen that exactly one suxh
exists, and that it must be affinely independent. Figure 1 illustrates a sequence of
iterations of the GJK algorithm in two dimensions. We refer to [8] for a proof of
global convergence of the sequeritex||}.

For polytopes, GJK arrives &k = v(A — B) in a finite number of iterations,
as shown in [9]. For non-polytopes this may not be the case. For these type of
objects, it is necessary that the algorithm terminates as sowg la&s within a
given tolerance from(A — B). The error ofvy is estimated by maintaining a
lower bound for|jv(A — B)||. As a lower bound we may take the signed distance
from the origin to the supporting plané(—vy, vk - Wg), which is

Sk = Vk - W/ |[Vkll.

This is a proper lower bound since for positis the origin lies in the positive
halfspace, wherea& — B is contained in the negative halfspace of the plane. In
Figure 1 we see thd is positive in the cases where the dashed line crosses the
arrow.

(@)k=0W=0,8<0,u=0 (b)k=1,W = {wg},§ <0,u =0

©k =2,W = {wo,w1},§ > 0, (dk =3, W = {wp,wz}, s > 0,
w=3= 1 unchanged

Figure 1. Four iterations of the GJK algorithm (See Algorithm 1). The dashed
lines represent the support plangs—vy, vk - wg). The points oW are drawn
in black.

Contrary to||vk||, the lower boundy may not be monotonic iR, i.e., it is
possible thats; < & for j > i. Furthermore, 0O is a trivial lower bound for
lv(A— B)|. Hence, we use

as a lower bound, which is often tighter th&n

A monotonic lower bound is needed for the following reason. For certain con-
figurations of objects (in particular objects that have flat boundary elemémgs),
ill-conditioned i.e., a small change mmay result in a large changednSince the
computation ofv with finite precision arithmetics inevitably suffers from round-
ing errors, the computed value fdrmay be considerably smaller than its actual
value. The relative error im is larger for setdV that are close to being affinely
dependent, as we will see Section 5. GJK has a tendency to generate simplices
that are progressively more oblong, i.e., closer to being affinely dependent, as the
number of iterations increases. Hence, for ldegihe computed values fég may
be less reliable.

Givene, a tolerance for the absolute errorw||, the algorithm terminates as
soon ag|vk|| — uk < e. Algorithm 1 presents pseudo-code for the GJK distance
algorithm.

We now focus on the computation wt= v(conuY)) for an affinely indepen-
dent setY and the determination of the smallestC Y such thatv € conu X).

These operations are performed by a single subalgorithm. The requested subset
X ={Xo, ..., Xn} Oof Y is characterized by

n n
V:Z;/\ixi where X(;/\i —1 and A > 0.
= =

This subseX is the largest of all nonemp® Y for which each; of the point
v(aff(Z)) is positive. The requested pomis the pointv (aff(X)).

It remains to explain how to find thg; values forv(aff(X)), where X is
affinely independent. We observe that the vestetr v(aff(X)) is perpendicular
to aff(X), i.e.,v € aff(X) andv-(x; —xg) = Ofori =1, ..., n. Hence, the,; val-
ues are found by solving a system of linear equations. We apply Cramer’s rule to
solve these systems of equations. Since we need to find solutions for all nonempty
subsets ofY, we exploit the recursion in Cramer’s rule. Lét= {yo, ..., Yn},
wheren < d, the dimension of the space. In our cade= 3. Each nonempty
X C Y isidentified by a nonemptix C {0, ..., n} suchthatX = {y; :i € Ix}.

Algorithm 1 The GJK distance algorithm

v :="“arbitrary pointinA — B”;
W :=@;
w:=0;
closeenough=false;
while not closeenoughandv # 0 do begin
W:=Sa-g(—V);
§:=Vv-W/v[;
wi=maxyu, 8};
closeenough=||Vv| — u < ¢;
if not closeenoughthen begin
V:=v(conMW U {w}));
W :="*“smallestX € W U {w} such thav € conu X)";
end
end;
return ||v||

We obtain the following recursively defined solutions. For each subset have
Ai = Aj(X)/A(X), whereA(X) =}, Ai(X), and

Aidyi) =1
AjXULYD = DAY Yk —Yi Y,
i€|x

wherej ¢ lx andk is an arbitrary but fixed member ok, for instancek =
min(lx). The smallesX C Y such that € conu X) can now be characterized as
the subseX for which (i) Aj (X) > 0 for each e Ix, and (i) Aj(XU{yj}) <0,
forall j € Ix. The subalgorithm successively tests each nonempty siXbeét
Y until it finds one for which (i) and (ii) hold. In Section 4 we discuss how the
subalgorithm is further optimized in order to improve performance.

Finally, a pair of closest points is computed as follows. At termination, we
have a representation of~ v(A — B) as

n n
V:Z;/\iyi where 'X(;/\i —1 and A > 0.
|= =

Eachy; = p; — qi, wherep; andq; are support points of respectivelyand B.
Leta= > ,Aipi andb = > ;Aiqi. SinceA andB are convex, it is clear that
a c Aandb € B. Furthermore, it can be seen tlzat b = v. Hence,aandb are
closest points oA and B.

3 Support Mappings

In order to use GJK on a given class of objects, all we need is a support mapping
for that class. In this section we discuss the computation of the support points for
a number of geometric primitives and their images under affine transformation.

Polytope

The set of polytopes includes simplices (points, line segments, triangles, and tetra-
hedra), convex polygons, and convex polyhedra. For a polyfgpee may take
SA(V) = Sera)(V), i.€.,

sa(Vv) € vert(A) where Vv-sa(v) = maxVv-X: X e vert(A)}.

Obviously, a support point of a polytope can be computed in linear time with
respect to the number of vertices of the polytope. However, it has been mentioned
in a number of publications [4, 5, 3, 12] that by exploiting frame coherence, the
cost of computing a support point of a convex polyhedron can be reduced to almost
constant time. For this purpose, an adjacency graph of the vertices is maintained
with each polytope. Each edge on the polytope is an edge in the graph. In this
way, a support point that lies close to the previously returned support point can
be found much faster using local search. This technique is commonly referred
to ashill climbing. In our implementation, we us@hull [1] for computing the
adjacency graph of a polytope.

Box

A Box primitive is a rectangular parallelepiped centered at the origin and aligned
with the coordinate axes. L&t be a Box with extents:, 2y, and %y. Then,
we take as support mapping féx

sa((X, Y, 2)7) = (sgnx)nx, Sgny)ny, sgnz)nz)",

where sgix) = —1, if X < 0, and 1, otherwise.

7

Sphere

A Sphere primitive is a ball centered at the origin. The support mapping of a
SphereA with radiusp is

£ov ifv£0
={ vl
SalY) { 0 otherwise.

Cone

A Cone primitive is a capped cone that is centered at the origin and whose central
axis is aligned with the-axis. LetA be a Cone with a radius g@fat its base, and

with its apex aty = n and its base & = —n». Then, the for the top anglte we

have sirte) = p/v/ p2 + (2n)2. Leto = v/x2 + 72, the distance fronix, y,)T

to they-axis. We choose as support mapping £githe mapping

0,7,07 ify > (X, y, 2)T|| sin(e)
sa((X, ¥,2") =1 (2x,—n,22)7 else, ifo > 0
0, —n, 0) otherwise.

Cylinder

A Cylinder primitive is a capped cylinder that again is centered at the origin and
whose central axis is aligned with tlyeaxis. Let A be a Cylinder with a radius

of p, and with its top aty = n and its bottom ayy = —»n. We find as support
mapping forA the mapping

(2x, sgny)n, £2)7 ifo >0

Ty _
SA((X’ Y, Z)) - { (O’ Sgr(y)r], O) otherwise.

Affine Transformation

Given a class of objects for which we have a support mapping, the following
theorem yields a method for computing support points for images under affine
transformations of objects of this class.

Theorem 1. Given s, a support mapping of object A, affdx) = Bx + ¢, an
affine transformation, a support mapping fb¢A), the image of A under, is

sta) (V) = T(sa(BTv)).

8

Proof. A support mappingra) is characterized by

V-Sra(v) =maxv- T(X) : X € A}
We rewrite the right member of this equation using the following deduction.
V-T(X)=V-Bx+Vv-c=V'Bx+v-c=B'V)'x+v-c=Bv)-x+V-c.
This equation is used in the steps marked:byin the following deduction.

maxv-Tx) :xe A} £ max(BTv)-x+v-c:xe A
= ma{(B'v)-x:xe Al+v-c
= (B'v)-saB'V)+v-c

® V. TsaBTv)

Hencesra) (V) = T(sa(BTv)) is a support mapping af(A). O

4 Speed

This section presents a fast implementation of the subalgorithm and a collision
detection algorithm derived from the GJK distance algorithm.

Subalgorithm

It is hinted in [9] that by caching and reusing results of dot products, substantial
performance improvement can be obtained. Since some or all vertidésraap-

pear inW1, many dot products from thle-th iteration are also needed in the

k + 1-th iteration. We will show how this caching of dot products is implemented
efficiently.

In order to minimize the caching overhead, we assign an index number to each
new support point, which is invariant for the duration that the support point is a
member oW U {wg}. SinceW U {wy} has at most four points, and each point
that is discarded will not reappear, we need to cache data for only four points. The
support points are stored in an arsayThe index of each support point is its array
index. The seW is identified by a subset 40, 1, 2, 3}, which is implemented as
a bit-arrayb, i.e., Wx = {y[i] : b[i] = 1,i =0, 1, 2, 3}. The index number of the
new support pointvi is the smallest for which b[i] = 0. Note that a free ‘slot’

9

for w is always available during iterations, becauséfifthas four elements, then
vk = v(conyWg)) must be zero, sincé is affinely independent, in which case
the algorithm terminates immediately without computing a support point.

The dot products of all pairgi], y[j] € Wk U {wg} are stored in a & 4 array
d,i.e.. d[i, j] =yli]-y[j]. In each iteration, we need to compute the dot products
of the pairs containingvk only. The other dot products are already computed in
previous iterations. For ®/ containingn points, this takes + 1 dot product
computations.

We further improve the performance of the subalgorithm by caching all the
A (X) values. Lety = Wi U {wg}. For many of theX C Y, the A; (X) values are
needed in several iterations, and are therefore better cached and reused rather than
recomputed. For this purpose, each sub&é identified by the integer value of
the corresponding bit-array. For instance, ¥o= {y[0], y[3]}, we use bit-array
1001, corresponding to integer valu&-2 22 = 9. The values of\; (X) for each
subsetX are stored in a 16 4 arrayD. The elemenD|Xx, i] stores the value
of Aj(X), wherex is the integer value corresponding with subXet Only the
elementsD[Xx, i] for which biti of bit-arrayx is set, are used. Similar to the dot
product computations, we only need to compute, in datthiteration, the values
of Aj(X) for the subsetx containing the new support poink, since the other
values are computed in previous iterations.

Another improvement concerning the subalgorithm is based on the following
theorem.

Theorem 2. For each k-th iteration, where k 1, we havevk € Wk.1.

Proof. Supposevk ¢ Wk+1, thenv(Wiy1) = v(Wk), and thusvky1 = vk. But
since|lvk+1]l < |Ivkll, this yields a contradiction. O

Consequently, only those subs&tsfor whichwy € X need to be tested by the
subalgorithm. This reduces the number of subsets frém 2 1 to 2", wheren
is the number of elements .

Separating Axis

For deciding whether two objects intersect, we do not need to have the distance
between them. We merely need to know whether the distance is equal to zero or
not. Hence, as soon as the lower bound for the distance becomes positive, the
algorithm may terminate returning a nonintersection. The lower bound is posi-
tive iff vk - wx > 0, i.e., v is aseparating axiof A and B. In general, GJK

10

needs less iterations for finding a separating axis of a pair of nonintersecting ob-
jects than for computing an accurate approximatiom(@ — B). For instance

in Figure 1, the vectovy is a separating axis for the first time whkn= 2. If

the objects intersect, then the algorithm terminategwos O, returning an inter-
section. Algorithm 2 shows an algorithm for computing a separating axis, which
is derived from the GJK distance algorithm. Besides requiring fewer iterations

Algorithm 2 The GJK separating-axis algorithm

v :="“arbitrary vector”
W :=0;
repeat
W:=Sa_g(—V);
if v.-w > Othen return false;
V:=v(conyW U {w}));
W :="smallestX € W U {w} such tha € conuX)";
untilv =0;
return true

in case of nonintersecting objects, the separating-axis algorithm performs better
than the distance algorithm for another reason. Notice that the vallwd| @ not
needed in the GJK separating-axis algorithm. The computatid|pfnvolves
evaluating a square root, which is an expensive operation. A single iteration of the
separating-axis algorithm is therefore significantly cheaper than an iteration of the
distance algorithm.

Also, note that in the separating-axis algorithndoes not need to be initial-
ized by a point inA — B, since the length of does not matter. This feature is
convenient for exploiting frame coherence.

Similar to closest-point tracking algorithms, such as the Lin-Canny closest
feature algorithm [10], and Cameron’s Enhanced GJK algorithm [3], an incre-
mental version of the GJK separating-axis algorithm shows almost constant time
complexity per frame for convex objects of arbitrary complexity, if frame coher-
ence is high. The incremental separating-axis GJK algorithm, further referred to
as ISA-GJK, exploits frame coherence by using the separating axis from the pre-
vious frame as initial vector fov. If the degree of coherence between frames is
high, then the separating axis from the previous frame is likely to be a separating
axis in the current frame, in which case ISA-GJK terminates in the first iteration.

11

Figure 2: Incremental separating axis computation using ISA-GJK. The separat-
ing axisv fromt = 0 is also a separating axis for= 1. Howevery fails to be a
separating axis for = 2. A new separating axig is computed using as initial

axis.

Figure 2 shows the behavior of ISA-GJK for a smoothly moving object. We saw
in Section 3 that a support point can be computed in constant time for quadrics
and, if coherence is high, in nearly constant time for arbitrary polytopes. Hence,
in these cases, ISA-GJK takes nearly constant time per frame.

Experiments show that, in the application of collision detection between con-
vex polyhedra, ISA-GJK is roughly five times faster than Lin-Canny. We did
not find significant differences in accuracy for these experiments. Lin-Canny oc-
casionally misses a collision detected by ISA-GJK, although the differences are
minimal. The results of these experiments are discussed in Appendix B.

5 Robustness

Numbers represented by a machine have finite precision. Therefore, arithmetic
operations will introduce rounding errors. In this section we discuss the implica-
tions of rounding errors for the GJK algorithm, and present solutions to problems
that might occur as a result of these.

12

Termination Condition

Let us review the termination conditigiv| — 1 < ¢ of the GJK distance algo-
rithm. We see that for larggv/|| the rounding error ofv|| — uk can be of the same
magnitude ag. This may cause termination problems. We solve this problem
by terminating as soon as the relative error, rather than the absolute error, in the
computed value ofv|| drops below a tolerance valge> 0. Thus, as termination
condition we takd|v| — u < g]||v|.

Moreover, forv =~ 0, we see that the right member of the inequality might
underflow and become zero, which in turn will result in termination problems.
This problem is solved by terminating as soon|as drops below a toleranae,
wherew is a small positive number.

We would like to add that our experiments have shown that for quadric objects,
such as spheres and cones, the average number of iterations used for computing
the distance i©(—log(¢)), i.e., the average number of iterations is roughly linear
in the number of accurate digits in the computed distance. For polytopes, the
average number of iterations is usually less than for quadrics, regardless of the
complexity of the polytopes, and is not a functioreqfor small values ot).

Backup Procedure

The main source of GJK’s numerical problems due to rounding errors is the com-
putation ofAj (X). Each nontrivialA; (X) is the product of a number of factors
of the formy; - yk — Vi - yj. If yk is almost equal tg; in one of these factors,
i.e., X is close to being affinely dependent, then the value of this factor is close
to zero, in which case the relative rounding error in the machine representation
of this factor may be large due to numerical cancellation. This results in a large
relative error in the computed value af (X), causing a number of irregularities
in the GJK algorithm.

One of these irregularities was addressed in the original paper [9]. Due to a
large relative error, the sign of the computed valuapfX) may be incorrect. As
a result of this, the subalgorithm will not be able to find a subsétat satisfies
the stated criteria. The original GJK uses a backup procedure to compute the best
subset. Here, the best subset is the suder which eachA; (X) is positive and
v(aff(X)) is nearest to the origin.

In our experiments, we observed that, in the degenerate case where the backup
procedure needs to be called, the difference between the best vector returned by
the backup procedure and the veotpifrom the previous iteration is negligible.

13

Hence, considering the high computational cost of executing the backup proce-
dure, we chose to leave it out and return the vector from the previous iteration,
after which GJK is forced to terminate. Should the algorithm continue iterating
after this event, then it will infinitely loop, since each iteration will result in the
same vector being computed.

llI-conditioned Error Bounds

Despite these precautions, the algorithm may still encounter configurations of ob-
jects that cause it to loop infinitely, as noted by Nagle [11]. This problem may
occur when two polytopes that differ a few orders of magnitude in size are in close
proximity of each other. Due to the difference in size, the Minkowski sum of the
objects has extremely oblong shaped facets. Let us examine a scenario in which
the current simplex corW) is an oblong shaped triangle, and= v(A — B) is

an internal point of the triangle.

First we note that two of the triangle’s vertices lie close to each other. This
may cause a large relative rounding error in the computation; 0K) for some
subsetsX. Hence, the computed valfie] of v might suffer from this error. Note
that the subalgorithm always computgsvalues that are positive and add up to
one. Thus|v] is also an interior point of the triangle, yet located at some distance
fromyv. Figure 3(a) depicts the effect of an errofuj. We see that a small error in
[v] may resultin a large error ifi|v|| — «], the computed error bound {¥|. The
algorithm should terminate at this point since the acfuél u is zero. However,
the error in[||v|| — n] causes the algorithm to continue iterating. Since the support
pointw for [v] is already a vertex of the current simplex, the algorithm will find
the samgyv] in each following iteration, and thus, will never terminate.

Another problem occurs whar{ A— B) lies close to the diagonal of an oblong
quadrilateral facet iPA — B, as depicted in Figure 3(b). Again, the large error
in [|lv] —] causes the algorithm to continue iterating. Only this time, GJK
alternately returns the diagonal’s opposing vertiwemdw’ as support points. In
each iteration, one of the vertices is added to the current simplex and the other
is discarded, and vice versa. The remaining two vertices of the current simplex
are the vertices of the facet lying on the diagonal. We see that for the simplex
containingw, the value[v]’ is computed, which results in the vertex being
added to the current simplex. For the simplex containiigthe value[v] is
computed, which again will causeto be added to the current simplex.

Both degenerate cases are tackled in the following way. In each iteration, the
support pointwy is tested whether it is a member B&_1 U {wx_1}. This can

14

(b) Alternating support points

Figure 3: Two problems in the original GJK, resulting from ill-conditioned error
bounds.

15

only be true as a result of one of the degenerate cases. If a degenerate case is
detected, then the algorithm terminates and retfrgisas the best approximation
of v(A — B) within the precision bounds of the machine.

We have done some extensive bench tests on random inputin order to compare
the robustness of our enhanced algorithm with the original GJK. The tests showed
that with this extra termination condition, our algorithm terminates properly for
all tested configurations of polytopes, regardless of the size of the tolerance for
the relative error in the computed distance, whereas the original GJK occasionally
failed to terminate on the same input.

A Convex Analysis Mini-primer

TheMinkowski surfiof objectsA andB is defined as
A-B={x—-y:xe Aye B}.

Although the Minkowski sum of a pair of objects is a set of vectors, it is regarded
as a point set. The space of this point set has the zero v@awits origin. It can
be shown that ifA and B are convex, the\ — B is also convex.

A support mappings a functionsc that maps a vector to a point of an objégt
according to

sc(v) eC and v-sc(v) =maxv-x:xe Cl.

The value of a support mapping for a given vector is called@port point It can
be shown that the mapping

Sa-B(V) = sa(V) — sg(—V)

is a support mapping oA — B.
Theaffineandconvex hullof a finite point setX = {x1, ... , X} are the sets
of, respectivelyaffineandconvex combinationsf points in X, denoted by

aff(X) = {Xn:kixi :Xn:)q zl}
i=1 i=1
conyX) = {ikixi :iki =1 > O}.
i=1 i=1

2Although Minkowskidifferenceseems more appropriate, we avoid using this term, since it
is defined differently in many geometry texts, namely A% — B)*, i.e., the complement of the
Minkowski sum of A's complement andB (shrink one object by the other).

16

The convex hull of a finite point set is callegalytope A set of points is called
affinely independent none of the points can be expressed as an affine combina-
tion of the other points. In three-dimensional space, an affinely independent set
has at most four points. Aimplexis the convex hull of an affinely independent
set of points. These points are referred to asviérticesof the simplex. A sim-
plex of one, two, three, and four vertices is, respectively, a point, a line segment,
a triangle, and a tetrahedron.

Forv € R3\ {0} and$ € R, theplane H(v, §) is a set of points defined by

Hv,8) ={xe R®:v-x+§ =0}

The vectow is referred to as aormalof the plane. Fofjv|| = 1, the value of is
the signed distancérom H (v, §) to the origin. The positivlalfspaceof a plane
H (v, §) is defined as

HYW,8) ={xeR3:v-x+§ > 0}

The negative halfspadd ~ (v, §) is defined similarly. Obviously, for nonnegative
§ the origin lies in the positive halfspace.

B Empirical Results

In order to compare the performance of ISA-GJK with existing algorithms, we
conducted the following experiment. As benchmark we took the multi-body sim-
ulation from I-COLLIDE [7]. This is a simulation of a number of polyhedra that
move freely inside a cubic space. The number, complexity, density, and transla-
tional and rotational velocities of the objects in the space can be varied in order to
test the algorithms under different settings. The simulation has a simple type of
collision response. It exchanges the translational velocities of each colliding pair
of objects, thus simulating a pseudo-elastic reaction. Objects also bounce off the
walls of the cubic space in order to constrain them inside the space.

Using this benchmark, we compared the performance of ISA-GJK to Lin-
Canny’s. For testing Lin-Canny we used I-COLLIDE [6], whereas for testing ISA-
GJK, we replaced the Lin-Canny test in I-COLLIDE by admplementation of
our ISA-GJK intersection test.

The tests were performed on a Sun UltraSPARC-I (167MHz), compiled using
the GNU C/G+ compiler with ‘-O2’ optimization. As default setting we used 20
objects, each having 20 vertices. The default density was set at 5% of the space

17

e Lin<

300 / Lin-Canny
/ S

200 /

100

Time (s)

Figure 4. Performance under density variations

being occupied by objects. The translational velocity of an object is expressed in
the percentage of its radius the object is displaced in each frame. The default value
is 5%. The default rotational velocity is 10 degrees per frame. For each setting,
we measured the times for the three algorithms by simulating 50,000 frames.

We experimented with different densities, translational velocities, and rota-
tional velocities. The results of this experiment are shown in Figure 4, 5, and 6.

References

[1] C. B. Barber, D. P. Dobkin, and H. Huhdanpaa. The Quickhull algorithm
for convex hull. ACM Transactions on Mathematical Softwa?@:469-483,
1996.

[2] G. Bell, R. Carey, and C. Marrin. VRML97: The Virtual Reality Modeling
Language. http://www.vrml.org/Specifications/VRML97, 1997.

18

Time (s)

——Lin-Canny
—#—ISA-GJK

0 10 20 30 40 50 60 70 80 % 100
Translational velocity (% of object radius / frame)

Figure 5: Performance under translational-velocity variations

Time (s)

—e—Lin-Canny
—#—ISAGIK

0 10 20 30 40 50 60 7 80 % 100
Rotational velocity (degrees / frame)

Figure 6: Performance under rotational-velocity variations

19

[3] S. Cameron. Enhancing GJK: Computing minimum and penetration dis-
tances between convex polyhedraPloc. IEEE Int. Conf. on Robotics and
Automationpages 3112-3117, 1997.

[4] S. A. Cameron and R. K. Culley. Determining the minimum translational
distance between convex polyhedra. Rroc. IEEE Int. Conf. on Robotics
and Automationpages 591-596, 1986.

[5] K. Chung and W. Wang. Quick collision detection of polytopes in virtual
environments. IrProc. ACM Symposium on Virtual Reality Software and
Technologypages 125-131, 1996.

[6] J. Cohen, M. C. Lin, D. Manocha, B. Mirtich, M. K. Ponamgi, and
J. Canny. |-COLLIDE: Interactive and exact collision detection library.
http://www.cs.unc.edu/"geom@OLLIDE.html, 1996. software library.

[7] J. D. Cohen, M. C. Lin, D. Manocha, and M. K. Ponamgi. I-COLLIDE: An
interactive and exact collision detection system for large-scale environments.
In Proc. ACM Symposium on Interactive 3D Graphpages 189-196, 1995.

[8] E. G. Gilbert and C.-P. Foo. Computing the distance between general con-
vex objects in three-dimensional spateEE Transactions on Robotics and
Automation 6(1):53-61, 1990.

[9] E. G. Gilbert, D. W. Johnson, and S. S. Keerthi. A fast procedure for comput-
ing the distance between complex objects in three-dimensional Siid€E.
Journal of Robotics and Automatipf(2):193-203, 1988.

[10] M. C. Linand J. F. Canny. A fast algorithm for incremental distance compu-
tation. InProc. IEEE Int. Conf. on Robotics and Automatigages 1008—
1014, 1991.

[11] J. Nagle. GJK collision detection algorithm wanted. posted on the
comp.graphics.algorithmsewsgroup, Apr. 1998.

[12] C.J.OngandE. G. Gilbert. The Gilbert-Johnson-Keerthi distance algorithm:
A fast version for incremental motions. Rroc. IEEE Int. Conf. on Robotics
and Automationpages 1183-1189, 1997.

[13] R. Rabbitz. Fast collision detection of moving convex polyhedra. In P. Heck-
bert, editor,Graphics Gems lVpages 83—-109. Academic Press, Boston,
MA, 1994,

20

