
Proximity Queries and Penetration Depth
Computation on 3D Game Objects

Gino van den Bergen

Not a Number
Meerenakkerplein 16
5652 BJ Eindhoven

The Netherlands
gino@acm.org

Abstract

This paper discusses methods for performing proximity queries (collision
detection, distance computation) and penetration depth computation on a large
class of convex objects. The penetration depth of a pair of intersecting objects is
the shortest vector over which one object needs to be translated in order to bring
the pair in touching contact. The class of objects includes convex primitives such
as polytopes (line segments, triangles, convex polyhedra) and quadrics (spheres,
cones, cylinders), as well as shapes derived from these primitives by affine
transformation and spherical expansion (inflating an object by a given offset).

1. Introduction

Interactions between 3D game objects usually involve contact or close proximity
of the objects. Determining which pairs of objects are in contact or at close
proximity is a complex task in many game environments. Additionally, for
resolving contacts, a description of the contact area is often required. A useful
entity for describing the contact area is penetration depth. The penetration depth
of a pair of intersecting objects is the shortest vector over which one object
needs to be translated in order to bring the pair in touching contact.

In this paper, we focus on methods for performing collision detection, distance
computation, and penetration depth computation on convex objects. Several
solutions for detecting collisions between convex objects have been offered in
the past.

For collision detection of simple polytopes, such as line segments, triangles and
boxes, the fastest results are achieved by applying the separating axis theorem
[Ebe00]. The separating axis theorem states that for a pair of non-intersecting
polytopes there exists a separating axis that is either orthogonal to a facet of
either polytope, or orthogonal to an edge from each polytope. So, a separating
axis can be found simply by testing all facet orientations and all combinations of
edge directions to see if one of these yields a separating axis. If none of the axes
is a separating axis, then the polytopes must intersect. A nice example of this
test is the oriented box test used in OBB trees [GLM96].

For polytopes that have a large number of features, the separating axis theorem
is no longer an option, as the number of axes to be tested is quadratic in the
number of features. For these cases it is better to switch to an incremental
collision detection algorithm that exploits frame coherence. Examples of such
algorithms are Lin-Canny [LC91], Chung-Wang [CW96], and GJK-based
methods [Cam97,vdB99]. Incremental algorithms have the benefit that, when
frame coherence is high, their performance is almost insensitive to the
complexity of the objects. Lin-Canny and GJK can be used also for computing
the distance between a pair of polytopes.

Methods for computing the penetration depth are less common. An algorithm for
determining the penetration depth of a pair of convex polyhedra has been
presented in [CC86]. This algorithm has quadratic space and time bounds since
it requires an explicit representation of the configuration space obstacle
(Minkowski sum). In [Cam97], Cameron presents a faster method, however this
method returns an estimate for the magnitude of the penetration depth. The
returned penetration depth may point considerably away from the actual
penetration depth.

Contribution

In this paper, we offer a novel algorithm for determining the exact penetration
depth of a pair of convex objects. This algorithm is closely related to the Gilbert-
Johnson-Keerthi (GJK) algorithm, so we feel it is appropriate to first present an
overview of GJK applied to distance computation and collision detection. The
main strength of the methods presented here is the fact that they are applicable
to a large class of convex objects. Besides polytopes, the class also contains
quadric primitives (spheres, cones, cylinders), as well as shapes derived from
these primitives by affine transformation and Minkowski summation. Minkowski
sums are useful for representing sphere-swept volumes. Quadrics and sphere-
swept volumes are often more convenient for modeling game objects than
polytopes, since they require less storage, and allow exact representation of
features such as wheels, rods, and rounded edges.

2. Convex Objects and Support Mappings

This section defines the class of geometrical objects on which the proximity
queries and penetration depth computation are performed. Here, an object is a
closed convex point set of arbitrary dimension. The single piece of information
regarding the geometry of the objects that is used by the queries is a support
mapping. A support mapping of an object A is a function As that maps vectors to
points, according to

{ }AsAs AA ∈⋅=⋅∈ xxvvvv :max)(,)(

The value of a support mapping for a given vector is called a support point. Note
that a support mapping of a given object may not be uniquely determined. The
choice of support mapping does not matter in the applications that we will
encounter. A support mapping fully describes the geometry of a convex object,
and can thus be viewed as an implicit representation of the object.

The class of objects we consider is recursively constructed from:
1. Convex primitives, such as:

a. Polytopes: convex hulls of finite point sets, e.g., line segments,
triangles, and convex polyhedra.

b. Quadrics: spheres, cones, cylinders.
2. Minkowski sums of pairs of convex objects.
3. Affine transformations of convex objects.

For each primitive type we need to supply a support mapping. The support
mappings for Minkowski sums and affine transformations can be derived from the
support mappings of their child objects. We will discuss how to do this further on.

For quadric objects, a support point can be computed in constant time [CF90,
vdB99]. It can be seen that for polytopes, there exists a support mapping that
returns vertices only. For a given vector, the corresponding support point is the
vertex for which the dot product with this vector is the greatest. So, without
preprocessing, the computation of a support point for a polytope takes an amount
of time that is linear in the number of vertices. It is shown in [CW96] that a
support point can be found in)log(nO time for two- and three-dimensional
polytopes represented using the hierarchical representation by Dobkin and
Kirkpatrick [DK90].

In interactive applications, there is usually a lot of frame coherence. It has been
mentioned in a number of publications [CC86,CW96,Cam97,OG97] that by
exploiting frame coherence, the cost of computing a support point of a convex
polyhedron can be reduced to almost constant time. For this purpose, an
adjacency graph of the vertices is maintained for each polytope. Each edge on
the polytope is an edge in the graph. In this way, a support point that lies close to
the previously returned support point can be found much faster using local
search. This technique is commonly referred to as hill climbing. The adjacency
graph of polytope vertices can be obtained by computing the convex hull, for
instance, using Quickhull [BDH96].

Recently, a hybrid technique has been presented that allows hill climbing to be
performed on a hierarchical polytope representation, thus maintaining a worst-
case)log(nO time bound, while allowing near constant computation cost when
frame coherence is high [GHZ99,EL00].

Minkowski Sum

The Minkowski sum of objects A and B is defined as

},:{ BABA ∈∈+=+ baba .

It is not very hard to show that if A and B are convex, then A + B is also convex.
Furthermore, it can be shown that the mapping

)()()(vvv BABA sss +=+

is a proper support mapping for A + B .

Minkowski sums are useful for representing swept volumes. Most commonly
used are sphere-swept volumes. A sphere-swept volume is the result of adding a
sphere to an arbitrary convex object. Figure 1 shows the sphere-swept volume
resulting from adding a sphere to a box.

Figure 1: The Minkowski sum of a box and a
sphere.

Sphere-swept volumes are typically useful for estimating the contact plane in
physics-based simulations. For this purpose, a skin-bone technique is applied.
Collision detection is performed on sphere-swept objects. When a collision is
found, the motion integration time step is subdivided until a configuration is
attained in which the sphere-swept objects (the skins) overlap, but the plain
objects (the bones) do not overlap. For such a configuration, the closest points
pair of the plain objects can be used as an approximation of the contact plane.

Further on, we will discuss the computation of penetration depth, which is better
suited for approximating the contact plane in interactive applications, since it
does not require the time step to be subdivided.

Affine Transformation

The position, orientation, and non-uniform scaling of game object are
represented by affine transformations. For an affine transformation cBxx +=)(T ,
the matrix B represents the orientation and scaling of the object’s local coordinate
system, and the vector c represents the position of the object’s local origin.

Given As , a support mapping of object A, the function

))(()(T
)(vBv AAT sTs =

is a support mapping for)(AT , the image of A under T [vdB99]. Here, TB denotes

the transpose of B. Note that TTT)(BvvB = is simply v left-multiplied with B.

Bounding Boxes

A lot of techniques for speeding up collision detection of 3D objects make use of
axis-aligned bounding boxes (AABBs). One example is an incremental sorting
technique, often referred to as Sweep and Prune, that maintains a list of pairs of

overlapping bounding boxes [Bar92,CLMP95]. Another example is the AABB
tree, a bounding box hierarchy that is used for speeding up collision detection
between complex shapes [vdB97].

The axis-aligned bounding box of a convex object can be computed
straightforwardly by using a support mapping. Let 3,2,1, =iie be the axes of the
coordinate system to which the bounding box is aligned. Then, the projection of
the object A onto ie is given by the interval

)](),([iAiiAi ss eeee ⋅−⋅ .

The bounding box is the Cartesian product of the intervals on the three
coordinate axes.

For an object A whose placement is given by an affine transformation
cBxx +=)(T , the computation of the bounding box of)(AT with respect to the

standard (world) coordinate system can be further optimized. The projection of
)(AT on ie is

))](()),(([TT
iAiiAi sTsT eBeeBe ⋅−⋅ .

For the standard coordinate system, we have)0,0,1(1 =e ,)0,1,0(2 =e ,)1,0,0(3 =e .

We see that the vector TTT)(BeeB ii = is simply the i th row of B. Furthermore,

ceBxexe ⋅+⋅=⋅ iii T)(is equal to ii c+⋅ xb , where ib is the i th row of B, and ic is

the i th component of c. We can reduce the projection of)(AT onto ie to

])(,)([,iiAiiiAi cscs +⋅+−⋅ bbbb .

For Minkowski sums of convex objects we have the following useful property.
The AABB of A + B is equal to the Minkowski sum of the AABBs of A and B. This
can be verified by observing that for intervals],[11 eb and],[22 eb , we have

],[],[],[21212211 eebbebeb ++=+ .

Practical use of this property is found in collision detection of sphere-swept
objects. For instance, we have a rigid object represented by a complex shape
such as a triangle mesh. For the shape we compute an AABB tree as a
preprocessing step. For some tasks it is necessary to add a sphere to the shape,
in order to ‘fatten’ the object, while others use the plain object. Instead of
maintaining two hierarchies, one for the plain and one for the sphere-swept
object, we add the sphere during the traversal of the AABB tree. For each visited
node during the traversal we compute the Minkowski sum of the node’s AABB

and the AABB of the sphere, and use the resulting AABB for the rejection test.
This technique is particularly useful in the skin-bone technique for estimating the
contact plane.

Configuration Space

The collision detection, distance computation, and penetration depth computation
problems are expressed in terms of the configuration space obstacle of the query
objects. For this purpose we introduce a negation operation to the Minkowski
sum:

}:{ Bbb ∈−=− B .

It can be seen that the mapping

)()(vv −−=− BB ss

is indeed a support mapping for -B .

The configuration space obstacle (CSO) of objects A and B is the object
)(BA −+ , which we will abbreviate to A - B. The mentioned queries are expressed

in terms of A - B in the following way. The collision detection problem is
expressed as

BABA −∈⇔∅≠∩ 0 .

Here, 0 denotes the zero vector or origin of the configuration space. The distance
),(BAd between A and B can be expressed as follows

{ }BABAd −∈= xx :min),(.

Similarly, the magnitude of the penetration depth),(BAp of A and B can be
expressed as

{ }BABAp −∉= xx :inf),(.

We use infimum, i.e., greatest lower bound, rather than minimum since A – B is a
closed set. It can be seen that for intersecting objects the penetration depth must
be a point on the boundary of A – B. Figure 2 illustrates the relation between the
objects and their CSO.

A

B

A - B

0

Figure 2: A pair of intersecting objects
and their corresponding CSO. The arrow
represents the penetration depth.

3. The Gilbert-Johnson-Keerthi Algorithm

This section presents an overview of the Gilbert-Johnson-Keerthi (GJK) algorithm
[GJK88,GF90]. The GJK algorithm is an iterative method for computing the
distance between a pair of convex objects. A more in-depth discussion as well as
details on how to improve the performance and robustness of GJK can be found
in [vdB99].

GJK is essentially a descent method for finding the point in the CSO closest to
the origin. In each iteration, a simplex is constructed that is contained in the CSO
and lies closer to the origin than the simplex constructed in the previous iteration.
The algorithm terminates as soon as the estimated error in the computed
distance is less than a given tolerance.

We define kW as the set of vertices of the simplex constructed in the k th iteration,

and kv as the point in the simplex closest to the origin. Initially, we have ∅=0W ,

and 0v , an arbitrary point in A - B. Since each kv is contained in the CSO, the

length of kv must be an upper bound for the distance.

GJK generates a sequence of simplices in the following way. In each iteration
step, a vertex)(kBAk s vw −= − is added to the simplex. The new 1+kv is the point in

the convex hull of }{ kkW w∪ closest to the origin. For 1+kW , we take the smallest

sub-simplex of }{ kkW w∪ that contains 1+kv . The point 1+kv and the simplex 1+kW

are computed using Johnson’s algorithm [GJK88,vdB99]. Figure 3 shows a
sequence of iterations of the GJK algorithm in 2D.

0
v0

w0

0

w0v1

1w

0

w0

1w

v2

w2
0

w0

1w
w2

v3
w3

(a) ∅== 0,0 Wk (b) }{,1 01 w== Wk

(c) },{,2 102 ww== Wk (d) },{,3 203 ww== Wk

Figure 3: A sequence of iteratons of the GJK algorithm. The
dashed lines represent the support planes. The continuous
lines connecting the black dots represent the current simplex.

The error in the length of kv can be estimated if we also maintain a lower bound
for the distance. As lower bound we use

kkkk vwv /⋅=δ .

However, since kδ is not necessarily monotonic, we use the maximum kδ over
all iterations, and start with zero as initial lower bound.

The computation of kv involves the evaluation of a square root, which is not

very good for the performance. The lower and upper bound are therefore better
expressed in terms of squared distance. Note however that only for non-negative

kδ , we have

}/)max{(}max{})(max{
222

k
2

k kkk vwv ⋅== δδ ,

so for the case 0<⋅ kk wv , the squared lower bound should not be updated.

Collision Detection

For deciding whether or not two objects intersect, we do not need to know the
distance between them. We merely need to know whether the distance is equal
to zero or not. So, as soon as the lower bound for the distance becomes positive,
the algorithm may terminate returning a non-intersection. The lower bound is
positive iff 0>⋅ kk wv , i.e., kv is a separating axis of A and B. In general, GJK
needs fewer iterations for finding a separating axis of a pair of non-intersecting
objects than for computing the distance. For instance in Figure 3, the vector kv is
a separating axis for the first time when 2=k . For intersecting objects, the
algorithm terminates on 0v =k , i.e., a simplex containing the origin is found.

The collision detection version of GJK is particularly useful when there is a lot of
frame coherence. Similar to distance tracking algorithms, such as Lin-Canny
[LC91], and Cameron’s Enhanced GJK algorithm [Cam97], an incremental
version of the GJK separating-axis algorithm shows almost constant time
complexity per frame for convex objects of arbitrary complexity, when frame
coherence is high. The incremental separating-axis GJK algorithm, further
referred to as ISA-GJK, exploits frame coherence by using the separating axis
from the previous frame as initial vector. When the degree of coherence between
frames is high, the separating axis from the previous frame is likely to be a
separating axis in the current frame, in which case ISA-GJK terminates in the first
iteration.

4. Penetration Depth

In this section, we present an iterative method for computing the penetration
depth of a pair of intersecting objects. This method is closely related to GJK. It
also uses only support mappings as geometric representation of the objects, and
is therefore applicable to the same class of objects as GJK. Moreover, the
method uses the output of GJK, i.e., a simplex containing the origin, as input.

We saw that the penetration depth of a pair of intersecting objects A and B, is a
point on the boundary of A – Bclosest to the origin. We say “a point” since the
penetration depth is not necessarily unique. The basic strategy to finding such a
point is to start with a polytope that contains the origin and has vertices that lie on
the boundary, and ‘blow it up’ by adding vertices that lie on the boundary. In each
iteration step, we select the facet of the polytope closest to the origin and
subdivide it using support points as additional vertices. Note that for non-zero v,
the support point)(vBAs − is indeed a point on the boundary1.

For reasons of clarity, we will first explain the algorithm in 2D, and then
generalize it to 3D. In the 2D version, we blow up a convex polygon by splitting
the edges. We start off with a simple polygon, such as a triangle, that contains
the origin and has its vertices on the boundary of the CSO. For each edge of the
polygon we compute the point v on the affine hull of the edge (the line through
the edge’s vertices) that lies closest to the origin. The length of the shortest v is a
lower bound for the magnitude of the penetration depth, since the polygon is
contained in the CSO. The edge with the shortest v is going to be split.
Note that since the polygon is convex, the shortest v must be an internal point of
this edge. Figure 4 illustrates this property.

Figure 4: An arrow denotes the point on the
line through an edge, that lies closest to the
origin. The shortest arrow always points to an
internal point of the corresponding edge.

0

1 For the zero vector this does not have to be the case, however, the requirement that a support
point should always lie on the boundary can easily be satisfied.

In each iteration step, the edge with the shortest v is split by inserting the support
point)(vw BAs −= as new vertex. For the two new edges we compute the point on
the affine hull closest to the origin, and repeat this procedure until the shortest v
lies sufficiently close to the penetration depth. Figure 5 shows a sequence of
iterations of our method, which we will refer to as the expanding polytope
algorithm.

The algorithm terminates as soon as the error in v drops below a given tolerance.
As upper bound for the magnitude of the penetration depth we take the distance
from the support plane through w to the origin, which is vwv /⋅ . Again, we save

(a) 0=k (b) 1=k

(c) 2=k (d) 3=k

Figure 5: A sequence of iterations of the expanding polytope
algorithm. An arrow denotes the shortest vector v. An open
dot denotes the new vertex w. A dashed line represents the
support plane of the vector v.

ourselves the evaluation of square roots by squaring the distance measures.
We store the edges of the polygon together with their corresponding v vectors in
a priority queue, using the squared length of the vector as key value (shortest
length first). Note that edges whose v is not an internal point of the edge, will
never be the closest edge of a convex polygon, and can therefore be left out of
the priority queue. Priority queues can be implemented efficiently in C++ by
using the binary heap operations from the Standard Template Library.

We observe that when the origin lies close to the center of the CSO, the
algorithm ‘pokes around’ wildly before converging to the penetration depth. In the
extreme case where the CSO is circular and centered at the origin, the algorithm
will converge extremely slowly, since the penetration depth has an infinite
number of solutions. These cases are better avoided or dealt with in a different
way. Examples of such cases are pairs of concentric spheres or cylinders.

We are now ready to tackle penetration depth computation in 3D. The difference
with the 2D algorithm is that we need to inflate a convex polyhedron in 3D, and
thus have to subdivide triangles rather than line segments. The naïve way of
splitting a triangle would be to add a single vertex as depicted in Figure 6.

This is not a very good solution for two reasons. Firstly, as we proceed in splitting
the triangles, the resulting triangles will become gradually more oblong. For
oblong triangles, the computation of the closest point suffers more from
numerical problems due to round-off errors in floating point arithmetic. Secondly,
since the edges of the triangle are never broken, the algorithm will have a hard
time approaching the surface when the penetration depth is located near an edge
of the initial polytope.

We also need to split the edges of the triangle in order to get triangle fragments
that lie closer to the boundary. For this purpose, we compute auxiliary support
points for the edges. First, we compute for each edge e, the point ev on the edge
closest to the origin. Next, we split the edge by inserting a new vertex

)(eBAe s vw −= . A triangle is thus split into six fragments as depicted in Figure 7.

split

Figure 6: A naïve way to split a triangle.

However, edges that are part of the boundary of the CSO need not be split. This
case may occur when the CSO has flat faces, for instance, if either or one of the
query objects is a polytope. An edge is part of the boundary if the point ev lies in

the corresponding support plane through ew . This is the case iff
2

eee vwv =⋅ ,

as can easily be verified. So the ultimate solution is to split only the edges of the
triangle that are not part of the boundary, as depicted in Figure 8.

The point v on the affine hull of a simplex closest to the origin is computed in the
following way. Let },,{ 1 nww ÿ be the set of vertices of the simplex. We express

the point v as an affine combination of }{ iw , i.e., nnwwv λλ ++= �11 , for

11 =++ nλλ � . The vector v points to the closest point iff it is orthogonal to the

affine hull, i.e., 0)(1 =−⋅ wwv i , for ni ,,2 ÿ= . This results in solving a linear

system of equations bA =T)(iλ , where

split

Figure 7: A better way to split a triangle.

split

This edge is
part of the
boundary

Figure 8: The ultimate solution. Edges that
are part of the boundary are not split.

ÿÿ
ÿ
ÿ
ÿ

�

�

��
�
�
�

�

�

−⋅−⋅

−⋅−⋅
=

)()(

)()(

11

111

12121

wwwwww

wwwwww
A

nnn

n

�

���

�

�

, and

ÿÿ
ÿ
ÿ
ÿ

�

�

��
�
�
�

�

�

=

0

0

1

�
b .

This system of equations is easily solved by computing 1−A , the inverse of A,
since bA 1T)(−=iλ . The point v is an internal point of the simplex iff for all

ni ,,1ÿ= , the value of iλ is positive.

As mentioned earlier, we start off the algorithm with a polytope that contains the
origin and has its vertices on the boundary of the CSO. We have seen that for
intersecting objects, GJK returns a simplex that contains the origin. This simplex
will in most cases be a tetrahedron, which is just what we need for the expanding
polytope algorithm. However, in some cases, GJK may also return a line
segment or a triangle as simplex. We may deal with these degenerate cases in
two ways. We either add support points to the simplex, thus constructing a
proper polytope, or we recognize a special case and solve it using a dedicated
penetration depth computation method.

In the case where the simplex returned by GJK is a triangle, we can simply add
the support points)(nBAs − and)(n−−BAs , where n is a normal to the triangle. In
this way, we construct a hexahedron (two tetrahedra glued together) containing
the origin. In the case where the simplex is a line segment, we are dealing most
likely with a pair of intersecting spheres. Other configurations of intersecting
objects that may result in GJK returning a line segment are cubes or cylinders
that are aligned along their diagonals. In all cases where GJK returns a line
segment, we simply return the vertex of the line segment that lies closest to the
origin, which will be the correct penetration depth in most of these degenerate
cases.

The penetration depth can be used as an approximation of the contact plane’s
normal. The expanding polytope algorithm can be tailored to return also the
contact points. At termination, we have a description of the penetration depth as

nnwwv λλ ++= �11 , where 11 =++ nλλ � and 0>iλ . Each vertex is computed

as iii qpw −= , where ip and iq are support points of respectively A and B. Let

nnppa λλ ++= �11 and nnqqb λλ ++= �11 . Since A and B are convex, it is clear
that A∈a and B∈b . Furthermore, since vba =− , the points a and b are proper
contact points.

5. Conclusion

In this paper, we have discussed the Gilbert-Johnson-Keerthi algorithm, an
iterative method for computing the distance and detecting collision between
arbitrary convex objects, and offered a novel algorithm, referred to as the
expanding polytope algorithm, for computing the penetration depth of a pair of
convex objects. The main strength of these methods is the fact that they are
applicable to a large class of convex objects, including polytopes, quadrics, as
well as shapes derived from these primitives by affine transformation and
Minkowski summation.

A C++ implementation of GJK for collision detection and distance computation is
released as part of SOLID 2.0. Also, a standalone demo package, called GJK-
engine, has been made available. The complete C++ source code for both
packages can be downloaded from http://www.win.tue.nl/~gino/solid/.

Experiments have shown that the performance of these methods warrants their
use at interactive rates. Most notably, ISA-GJK, the collision detection version of
GJK, is one of the fastest collision detection methods for convex objects currently
available.

Reference

[Bar92] David Baraff. Dynamic Simulation of Non-Penetrating Rigid Bodies.
PhD thesis, Computer Science Department, Cornell University, 1992. Technical
Report 92-1275.

[BDH96] C. B. Barber, D. P. Dobkin, and H. Huhdanpaa. The Quickhull
algorithm for convex hull. ACM Transactions on Mathematical Software, 22:469-
483, 1996.

[Cam97] S. Cameron. Enhancing GJK: Computing minimum and penetration
distances between convex polyhedra. In Proc. IEEE Int. Conf. on Robotics and
Automation, pages 3112-3117, 1997.

[CC86] S. A. Cameron and R. K. Culley. Determining the minimum translational
distance between convex polyhedra. In Proc. IEEE Int. Conf. on Robotics and
Automation, pages 591-596, 1986.

[CLMP95] J. D. Cohen, M. C. Lin, D. Manocha, and M. K. Ponamgi. I-COLLIDE:
An interactive and exact collision detection system for large-scale environments.
In Proc. ACM Symposium on Interactive 3D Graphics, pages 189-196, 1995.

[CW96] K. Chung and W. Wang. Quick collision detection of polytopes in virtual
environments. In Proc. ACM Symposium on Virtual Reality Software and

Technology, pages 125-131, 1996.

[DK90] D. P. Dobkin and D. G. Kirkpatrick. Determining the separation of
preprocessed polyhedra - a unified approach. In Proc. 17th Int. Coll. Automata,
Languages and Programming, volume 443 of Lecture Notes in Computer
Science, pages 400-413. Springer-Verlag, 1990.

[Ebe00] David H. Eberly. 3D Game Engine Design: A Practical Approach to Real-
Time Computer Graphics. Morgan Kaufmann Publishers, San Francisco, CA,
2000.

[EL00] S. A. Ehmann and M. C. Lin. Accelerated proximity queries between
convex polyhedra by multi-level voronoi marching. In Proc. Int. Conf. on
Intelligent Robots and Systems, 2000.

[GF90] E. G. Gilbert and C.-P. Foo. Computing the distance between general
convex objects in three-dimensional space. IEEE Transactions on Robotics and
Automation, 6(1):53-61, 1990.

[GHZ99] L. J. Guibas, D. Hsu, and L. Zhang. H-walk: Hierarchical distance
computation for moving convex bodies. In Proc. 15th Annual ACM Symposium
on Computational Geometry, pages 265-273, 1999.

[GJK88] E. G. Gilbert, D. W. Johnson, and S. S. Keerthi. A fast procedure for
computing the distance between complex objects in three-dimensional space.
IEEE Journal of Robotics and Automation, 4(2):193-203, 1988.

[GLM96] S. Gottschalk, M. C. Lin, and D. Manocha. OBBTree: a hierarchical
structure for rapid interference detection. In proc. SIGGRAPH ’96, pages 171-
180, 1996.

[LC91] M. C. Lin and J. F. Canny. A fast algorithm for incremental distance
computation. In Proc. IEEE Int. Conf. on Robotics and Automation, pages 1008-
1014, 1991.

[OG97] C. J. Ong and E. G. Gilbert. The Gilbert-Johnson-Keerthi distance
algorithm: A fast version for incremental motions. In Proc. IEEE Int. Conf. on
Robotics and Automation, pages 1183-1189, 1997.

[vdB97] Gino van den Bergen. Efficient collision detection of complex
deformable models using AABB trees. Journal of Graphics Tools, 2(4):1-14,
1997.

[vdB99] Gino van den Bergen. A fast and robust GJK implementation for
collision detection of convex objects. Journal of Graphics Tools, 4(2):7-25, 1999.

