

Dual Numbers: Simple Math,
Easy C++ Coding, and Lots
of Tricks

Gino van den Bergen

gino@dtecta.com

Introduction

 Dual numbers extend the real
numbers, similar to complex
numbers.

 Complex numbers adjoin a new
element i, for which i2 = -1.

 Dual numbers adjoin a new
element ε, for which ε2 = 0.

Complex Numbers

 Complex numbers have the form

 z = a + b i

where a and b are real numbers.

 a = real(z) is the real part, and

 b = imag(z) is the imaginary part.

Complex Numbers
(Cont’d)

 Complex operations pretty much
follow rules for real operators:

 Addition:
 (a + b i) + (c + d i) =
 (a + c) + (b + d) i

 Subtraction:
 (a + b i) – (c + d i) =
 (a – c) + (b – d) i

Complex Numbers
(Cont’d)

 Multiplication:

 (a + b i) (c + d i) =
 (ac – bd) + (ad + bc) i

 Products of imaginary parts feed
back into real parts.

Dual Numbers

 Dual numbers have the form

 z = a + b ε

similar to complex numbers.

 a = real(z) is the real part, and

 b = dual(z) is the dual part.

Dual Numbers (Cont’d)

 Operations are similar to complex
numbers, however since ε2 = 0, we
have:
 (a + b ε) (c + d ε) =
 (ac + 0) + (ad + bc) ε

 Dual parts do not feed back into
real parts!

Dual Numbers (Cont’d)

 The real part of a dual calculation
is independent of the dual parts of
the inputs.

 The dual part of a multiplication is
a “cross” product of real and dual
parts.

Taylor Series

 Any value f(a + h) of a smooth function
f can be expressed as an infinite sum:

where f’, f’’, …, f(n) are the first, second,
…, n-th derivative of f.

 2

!2

)(

!1

)(
)()(h

af
h

af
afhaf

Taylor Series Example

Taylor Series Example

Taylor Series Example

Taylor Series Example

Taylor Series Example

Taylor Series and Dual
Numbers

 For f(a + b ε), the Taylor series is:

 All second- and higher-order terms
vanish!

 We have a closed-form expression that
holds the function and its derivative.

0
!1

)(
)()(

 b

af
afbaf

Real Functions on Dual
Numbers

 Any differentiable real function can be
extended to dual numbers:

 f(a + b ε) = f(a) + b f’(a) ε

 For example,

 sin(a + b ε) = sin(a) + b cos(a) ε

Compute Derivatives

 Add a unit dual part to the input value
of a real function.

 Evaluate function using dual arithmetic.

 The output has the function value as
real part and the derivate’s value as
dual part:

 f(a + ε) = f(a) + f’(a) ε

How does it work?

 Check out the product rule of
differentiation:

Notice the “cross” product of functions
and derivatives. Recall that

(a + a’ε)(b + b’ε) = ab + (ab’+ a’b)ε

)()()()())()((xgxfxgxfxgxf
dx

d

Automatic Differentiation
in C++

 We need some easy way of
extending functions on floating-
point types to dual numbers…

 …and we need a type that holds
dual numbers and offers operators
for performing dual arithmetic.

Extension by Abstraction

 C++ allows you to abstract from
the numerical type through:

 Typedefs

 Function templates

 Constructors (conversion)

 Overloading

 Traits class templates

Abstract Scalar Type

 Never use explicit floating-point
types, such as float or double.

 Instead use a type name, e.g.
Scalar, either as template

parameter or as typedef:

typedef float Scalar;

Constructors

 Primitive types have constructors
as well:
 Default: float() == 0.0f

 Conversion: float(2) == 2.0f

 Use constructors for defining
constants, e.g. use Scalar(2),
rather than 2.0f or (Scalar)2 .

Overloading

 Operators and functions on primitive
types can be overloaded in hand-baked
classes, e.g. std::complex.

 Primitive types use operators: +,-,*,/

 …and functions: sqrt, pow, sin, …

 NB: Use <cmath> rather than <math.h>.
That is, use sqrt NOT sqrtf on floats.

Traits Class Templates

 Type-dependent constants, e.g. machine
epsilon, are obtained through a traits
class defined in <limits>.

 Use
std::numeric_limits<T>::epsilon()
rather than FLT_EPSILON.

 Either specialize this traits template for
hand-baked classes or create your own
traits class template.

Example Code (before)

 float smoothstep(float x)

{

 if (x < 0.0f)

 x = 0.0f;

 else if (x > 1.0f)

 x = 1.0f;

 return (3.0f – 2.0f * x) * x * x;

}

Example Code (after)

 template <typename T>

T smoothstep(T x)

{

 if (x < T())

 x = T();

 else if (x > T(1))

 x = T(1);

 return (T(3) – T(2) * x) * x * x;

}

Dual Numbers in C++

 C++ stdlib has a class template
std::complex<T> for complex
numbers.

 We create a similar class template
Dual<T> for dual numbers.

 Dual<T> defines constructors,
accessors, operators, and standard
math functions.

Dual<T>

 template <typename T>
class Dual
{
public:
…
T real() const { return m_re; }
T dual() const { return m_du; }
…
private:
 T m_re;
 T m_du;
};

Dual<T>: Constructor

 template <typename T>
Dual<T>::Dual(T re = T(), T du = T())
 : m_re(re)
 , m_du(du)
{}

…

Dual<float> z1; // zero initialized

Dual<float> z2(2); // zero dual part

Dual<float> z3(2, 1);

Dual<T>: operators

 template <typename T>

Dual<T> operator*(Dual<T> a,

 Dual<T> b)

{

 return Dual<T>(

 a.real() * b.real(),

 a.real() * b.dual() +

 a.dual() * b.real()

);

 }

Dual<T>: operators
(Cont’d)

 We also need these

template <typename T>
Dual<T> operator*(Dual<T> a, T b);

template <typename T>
Dual<T> operator*(T a, Dual<T> b);

since template argument deduction does
not perform implicit type conversions.

Dual<T>: Standard Math

 template <typename T>

Dual<T> sqrt(Dual<T> z)

{

 T x = sqrt(z.real());

 return Dual<T>(

 x,

 z.dual() * T(0.5) / x

);

 }

Curve Tangent Example

 Curve tangents are often computed by
approximation:

for tiny values of h.

httwhere
tt

tt

01

01

01 ,
)()(

)()(

pp

pp

Curve Tangent Example:
Approximation (Bad #1)

Actual
tangent P(t0)

P(t1)

Curve Tangent Example:
Approximation (Bad #2)

t1 drops outside
parameter domain

(t1 > b)

P(t0)

P(t1)

Curve Tangent Example:
Analytic Approach

 For a 3D curve

the tangent is

],[)),(),(),(()(batwheretztytxt p

))(),(),(()(,
)(

)(
tztytxtwhere

t

t

p

p

p

Curve Tangent Example:
Dual Numbers

 Make a curve function template using a class
template for 3D vectors:

 template <typename T>

 Vector3<T> curveFunc(T t);

 Call the curve function on Dual<Scalar>(t, 1)
rather than t:

 Vector3<Dual<Scalar> > r =

 curveFunc(Dual<Scalar>(t, 1));

Curve Tangent Example:
Dual Numbers (Cont’d)

 The evaluated point is the real part of the result:

Vector3<Scalar> position = real(r);

 The tangent at this point is the dual part of the
result after normalization:

Vector3<Scalar> tangent =

 normalize(dual(r));

Line Geometry

 The line through points p and q can be
expressed:

 Explicitly,

 x(t) = p t + q(1 – t)

 Implicitly, as a set of points x for which:

 (p – q) × x = p × q

Line Geometry

p

q
0

p×q

 p × q is orthogonal to the plane opq, and its
length is equal to the area of the parallellogram
spanned by p and q.

Line Geometry

p

q
0

p×q
x

 All points x on the line pq span with p – q a
parallellogram that has equal area and
orientation as the one spanned by p and q.

Plücker Coordinates

 Plücker coordinates are 6-tuples of
the form (ux, uy, uz, vx, vy, vz),
where

 u = (ux, uy, uz) = p – q, and

 v = (vx, vy, vz) = p × q

Plücker Coordinates
(Cont’d)

 Main use in graphics is for determining
line-line orientations.

 For (u1:v1) and (u2:v2) directed lines, if

 u1 • v2 + v1 • u2 is

zero: the lines intersect
positive: the lines cross right-handed
negative: the lines cross left-handed

Triangle vs. Ray

 If the signs of permuted dot products of
the ray and the edges are all equal, then
the ray intersects the triangle.

Plücker Coordinates and
Dual Numbers

 Dual 3D vectors conveniently
represent Plücker coordinates:

 Vector3<Dual<Scalar> >

For a line (u:v), u is the real part
and v is the dual part.

Plücker Coordinates and
Dual Numbers (Cont’d)

 The dot product of dual vectors u1 + v1ε
and u2 + v2ε is dual number z, for which

 real(z) = u1 • u2, and

 dual(z) = u1 • v2 + v1 • u2

 The dual part is the permuted dot
product.

Translation

 Translation of lines only affects the
dual part. Translation over c gives:

 Real: (p + c) – (q + c) = p - q

 Dual: (p + c) × (q + c)
 = p × q - c × (p – q)

 p – q pops up in the dual part!

Translation (Cont’d)

 Create a dual 3×3 matrix T, for which

 real(T) = I, the identity matrix, and

 dual(T) =

 Translation is performed by multiplying this dual
matrix with the dual vector.

0

0

0

][

xy

xz

yz

cc

cc

cc

c

Rotation

 Real and dual parts are rotated in
the same way. For a matrix R:

 Real: Rp – Rq = R(p – q)

 Dual: Rp × Rq = R(p × q)

 The latter is only true for rotation
matrices!

Rigid-Body Motion

 For rotation matrix R and translation vector c,
the dual 3×3 matrix M = [I:-[c]×]R, i.e.,

 real(M) = R, and

 dual(M) =

maps Plücker coordinates to the new reference
frame.

RRc

0

0

0

][

xy

xz

yz

cc

cc

cc

Further Reading

 Motor Algebra: Linear and angular
velocity of a rigid body combined in a
dual 3D vector.

 Screw Theory: Any rigid motion can be
expressed as a screw motion, which is
represented by a dual quaternion.

 Spatial Vector Algebra: Featherstone
uses 6D vectors for representing
velocities and forces in robot dynamics.

References

 D. Vandevoorde and N. M. Josuttis. C++
Templates: The Complete Guide. Addison-
Wesley, 2003.

 K. Shoemake. Plücker Coordinate Tutorial. Ray
Tracing News, Vol. 11, No. 1

 R. Featherstone. Robot Dynamics Algorithms.
Kluwer Academic Publishers, 1987.

 L. Kavan et al. Skinning with dual quaternions.
Proc. ACM SIGGRAPH Symposium on Interactive
3D Graphics and Games, 2007

http://tog.acm.org/resources/RTNews/html/rtnv11n1.html
http://tog.acm.org/resources/RTNews/html/rtnv11n1.html

Conclusions

 Abstract from numerical types in
your C++ code.

 Differentiation is easy, fast, and
accurate with dual numbers.

 Dual numbers have other uses as
well. Explore yourself!

Thank You!

 Check out sample code soon to be
released on:

 http://www.dtecta.com

