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Introduction 

 Dual numbers extend the real 
numbers, similar to complex 
numbers.  

 Complex numbers adjoin a new 
element i, for which i2 = -1. 

 Dual numbers adjoin a new 
element ε, for which ε2 = 0. 



Complex Numbers  

 Complex numbers have the form 
 
  z = a + b i 
 
where a and b are real numbers. 

 a = real(z) is the real part, and 

 b = imag(z) is the imaginary part. 



Complex Numbers 
(Cont’d) 

 Complex operations pretty much 
follow rules for real operators: 

 Addition:  
 (a + b i) + (c + d i) =  
  (a + c) + (b + d) i 

 Subtraction:  
 (a + b i) – (c + d i) =  
  (a – c) + (b – d) i 



Complex Numbers 
(Cont’d) 

 Multiplication:  
 
 (a + b i) (c + d i) = 
      (ac – bd) + (ad + bc) i 
  

 Products of imaginary parts feed 
back into real parts. 



Dual Numbers  

 Dual numbers have the form 
 
  z = a + b ε  

 
similar to complex numbers. 

 a = real(z) is the real part, and 

 b = dual(z) is the dual part. 



Dual Numbers (Cont’d) 

 Operations are similar to complex 
numbers, however since ε2 = 0, we 
have: 
 (a + b ε) (c + d ε) =  
  (ac + 0) + (ad + bc) ε 

 Dual parts do not feed back into 
real parts! 



Dual Numbers (Cont’d) 

 The real part of a dual calculation 
is independent of the dual parts of 
the inputs. 

 The dual part of a multiplication is 
a “cross” product of real and dual 
parts.      



Taylor Series 

 Any value f(a + h) of a smooth function 
f can be expressed as an infinite sum: 
 
 
 
 
where f’, f’’, …, f(n) are the first, second, 
…, n-th derivative of f. 
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Taylor Series Example 
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Taylor Series and Dual 
Numbers 

 For f(a + b ε), the Taylor series is: 

 

 

 

 All second- and higher-order terms 
vanish! 

 We have a closed-form expression that 
holds the function and its derivative. 
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Real Functions on Dual 
Numbers 

 Any differentiable real function can be 
extended to dual numbers: 
 
 f(a + b ε) = f(a) + b f’(a) ε 
 

 For example,  
 
 sin(a + b ε) = sin(a) + b cos(a) ε 



Compute Derivatives 

 Add a unit dual part to the input value 
of a real function. 

 Evaluate function using dual arithmetic. 

 The output has the function value as 
real part and the derivate’s value as 
dual part: 
 
 f(a + ε) = f(a) + f’(a) ε 



How does it work? 

 Check out the product rule of 
differentiation: 
 
 
 
Notice the “cross” product of functions 
and derivatives. Recall that 
 
(a + a’ε)(b + b’ε) = ab + (ab’+ a’b)ε 
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Automatic Differentiation 
in C++ 

 We need some easy way of 
extending functions on floating-
point types to dual numbers… 

 …and we need a type that holds 
dual numbers and offers operators 
for performing dual arithmetic. 



Extension by Abstraction 

 C++ allows you to abstract from 
the numerical type through: 

 Typedefs  

 Function templates 

 Constructors (conversion) 

 Overloading 

 Traits class templates  



Abstract Scalar Type 

 Never use explicit floating-point 
types, such as float or double. 

 Instead use a type name, e.g. 
Scalar, either as template 

parameter or as typedef: 
 
typedef float Scalar; 



Constructors 

 Primitive types have constructors 
as well: 
 Default: float() == 0.0f 

 Conversion: float(2) == 2.0f 
  

 Use constructors for defining 
constants, e.g. use Scalar(2), 
rather than 2.0f or (Scalar)2 . 



Overloading 

 Operators and functions on primitive 
types can be overloaded in hand-baked 
classes, e.g. std::complex. 

 Primitive types use operators: +,-,*,/ 

 …and functions: sqrt, pow, sin, … 

 NB: Use <cmath> rather than <math.h>. 
That is, use sqrt NOT sqrtf on floats. 

 



Traits Class Templates 

 Type-dependent constants, e.g. machine 
epsilon, are obtained through a traits 
class defined in <limits>. 

 Use 
std::numeric_limits<T>::epsilon() 
rather than FLT_EPSILON. 

 Either specialize this traits template for 
hand-baked classes or create your own 
traits class template. 



Example Code (before) 

 float smoothstep(float x) 

{ 

    if (x < 0.0f) 

        x = 0.0f; 

    else if (x > 1.0f) 

        x = 1.0f; 

    return (3.0f – 2.0f * x) * x * x; 

}  



Example Code (after) 

 template <typename T> 

T smoothstep(T x) 

{ 

    if (x < T()) 

        x = T(); 

    else if (x > T(1)) 

        x = T(1); 

    return (T(3) – T(2) * x) * x * x; 

} 



Dual Numbers in C++ 

 C++ stdlib has a class template 
std::complex<T> for complex 
numbers. 

 We create a similar class template 
Dual<T> for dual numbers.  

 Dual<T> defines constructors, 
accessors, operators, and standard 
math functions. 



Dual<T> 

 template <typename T> 
class Dual 
{  
public: 
… 
T real() const { return m_re; } 
T dual() const { return m_du; } 
… 
private: 
  T m_re; 
   T m_du;  
}; 

 



Dual<T>: Constructor 

 template <typename T> 
Dual<T>::Dual(T re = T(), T du = T()) 
    : m_re(re) 
    , m_du(du) 
{} 
 

… 
 

Dual<float> z1; // zero initialized 

Dual<float> z2(2); // zero dual part  

Dual<float> z3(2, 1);  
  



Dual<T>: operators 

 template <typename T> 

Dual<T> operator*(Dual<T> a,  

                  Dual<T> b) 

{ 

  return Dual<T>( 

         a.real() * b.real(), 

         a.real() * b.dual() + 

             a.dual() * b.real() 

         ); 

  } 



Dual<T>: operators 
(Cont’d) 

 We also need these 
 
template <typename T> 
Dual<T> operator*(Dual<T> a, T b); 
 
template <typename T> 
Dual<T> operator*(T a, Dual<T> b); 
 

since template argument deduction does 
not perform implicit type conversions. 
 



Dual<T>: Standard Math 

 template <typename T> 

Dual<T> sqrt(Dual<T> z) 

{ 

    T x = sqrt(z.real()); 

    return Dual<T>( 

           x,  

           z.dual() * T(0.5) / x 

           ); 

 } 



Curve Tangent Example 

 Curve tangents are often computed by 
approximation:  
 
 
 
 
 
for tiny values of h. 
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Curve Tangent Example: 
Approximation (Bad #1) 

Actual 
tangent P(t0) 

P(t1) 



Curve Tangent Example: 
Approximation (Bad #2) 

t1 drops outside 
parameter domain 

(t1 > b) 

P(t0) 

P(t1) 



Curve Tangent Example: 
Analytic Approach 

 For a 3D curve  
 
 
 
 
the tangent is  
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Curve Tangent Example: 
Dual Numbers 

 Make a curve function template using a class 
template for 3D vectors: 
 
 template <typename T> 

 Vector3<T> curveFunc(T t); 

 

 Call the curve function on Dual<Scalar>(t, 1) 
rather than t: 
 
 Vector3<Dual<Scalar> > r =   

     curveFunc(Dual<Scalar>(t, 1)); 



Curve Tangent Example: 
Dual Numbers (Cont’d) 

 The evaluated point is the real part of the result: 
 
Vector3<Scalar> position = real(r); 

 

 The tangent at this point is the dual part of the 
result after normalization: 
 
Vector3<Scalar> tangent =  

    normalize(dual(r)); 



Line Geometry 

 The line through points p and q can be 
expressed: 

 Explicitly,  
  
 x(t) = p t + q(1 – t) 
 

 Implicitly, as a set of points x for which: 
 
 (p – q) × x = p × q 



Line Geometry 

p 

q 
0 

p×q 

 p × q is orthogonal to the plane opq, and its 
length is equal to the area of the parallellogram 
spanned by p and q. 



Line Geometry 

p 

q 
0 

p×q 
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 All points x on the line pq span with p – q a 
parallellogram that has equal area and 
orientation as the one spanned by p and q. 



Plücker Coordinates 

 Plücker coordinates are 6-tuples of 
the form (ux, uy, uz, vx, vy, vz), 
where 
    
 u = (ux, uy, uz) = p – q,   and 
 
 v = (vx, vy, vz) = p × q  



Plücker Coordinates 
(Cont’d) 

 Main use in graphics is for determining 
line-line orientations. 

 For (u1:v1) and (u2:v2) directed lines, if 
  
  u1 • v2 + v1 • u2     is 

    
zero:  the lines intersect 
positive: the lines cross right-handed 
negative: the lines cross left-handed 



Triangle vs. Ray 

 If the signs of permuted dot products of 
the ray and the edges are all equal, then 
the ray intersects the triangle. 



Plücker Coordinates and  
Dual Numbers 

 Dual 3D vectors conveniently 
represent Plücker coordinates: 
 
 Vector3<Dual<Scalar> > 

  
For a line (u:v), u is the real part 
and v is the dual part.  



Plücker Coordinates and  
Dual Numbers (Cont’d) 

 The dot product of dual vectors u1 + v1ε 
and u2 + v2ε is dual number z, for which 
 
 real(z) = u1 • u2, and 
  
 dual(z) = u1 • v2 + v1 • u2  

 

 The dual part is the permuted dot 
product.   



Translation 

 Translation of lines only affects the 
dual part. Translation over c gives: 

 Real: (p + c) – (q + c) = p - q 

 Dual: (p + c) × (q + c)   
      = p × q - c × (p – q) 

 p – q pops up in the dual part! 



Translation (Cont’d) 

 Create a dual 3×3 matrix T, for which 
 
 real(T) = I, the identity matrix, and  
 
 
 
 dual(T) = 
 
 
 

 Translation is performed by multiplying this dual 
matrix with the dual vector. 
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Rotation 

 Real and dual parts are rotated in 
the same way. For a matrix R: 

 Real: Rp – Rq = R(p – q) 

 Dual: Rp × Rq = R(p × q)  

 The latter is only true for rotation 
matrices! 



Rigid-Body Motion 

 For rotation matrix R and translation vector c, 
the dual 3×3 matrix M = [I:-[c]×]R, i.e., 
 
 real(M) = R, and  
 
 
 
 dual(M) = 
 
 
 
maps Plücker coordinates to the new reference 
frame. 

RRc
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Further Reading 

 Motor Algebra: Linear and angular 
velocity of a rigid body combined in a 
dual 3D vector. 

 Screw Theory: Any rigid motion can be 
expressed as a screw motion, which is 
represented by a dual quaternion. 

 Spatial Vector Algebra: Featherstone 
uses 6D vectors for representing 
velocities and forces in robot dynamics. 
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Conclusions 

 Abstract from numerical types in 
your C++ code.  

 Differentiation is easy, fast, and 
accurate with dual numbers. 

 Dual numbers have other uses as 
well. Explore yourself!  



Thank You! 

 Check out sample code soon to be 
released on: 
 
        http://www.dtecta.com  

 


