Conservative Mesh Decimation for Collision Detection and Occlusion Culling

Gino van den Bergen
Physics Programmer DTECTA

About This Work

GOC. GヘM DE DELOPERS CONFERミNCE | July 19-23, 2021 | \#GDC21

Occlusion Culling

- Farming Simulator uses depth culling for accelerated rendering of complex scenes.
- Intel's MaskedOcclusionCulling library is used for depth tests on SIMD-capable CPUs.
- Potentially occluding objects are drawn as lowpoly meshes into a hierarchical depth-buffer.
- Occluders for terrain patches are generated by conservative mesh decimation.

Terrain in Farming Simulator

Terrain in Farming Simulator

－Terrain rendering uses 1025×1025 height maps（2M triangles）．
－Height maps are dynamic．Player can modify terrain locally，e．g．dig a ditch．
－Each height map is subdivided into 16×16 patches from which occluders are generated．
－Occluders of modified patches are updated and stitched back to their neighbors．

Terrain Occluder Patches

Edge Contraction

- Edge is contracted to a single vertex.
- Vertex position is chosen such that error is minimized.

Image: M. Garland and P.S. Heckbert, SIGGRAPH '97

Hausdorff Distance

- The maximum distance from a point of a mesh to the closest point of the other mesh.
- Expresses how well a mesh resembles a target mesh.

Quadric Error Metric

- Computation of Hausdorff distance is expensive.
- Quadric Error Metric (QEM) expresses the distance to the original mesh local to each (new) vertex.
- QEM offers an upper bound for the Hausdorff distance and is cheaper to compute.

Plane Equation

- A plane has equation $a x+b y+c x+d=0$, or rather, $\mathbf{n} \cdot \mathbf{x}+d=0$, where $\mathbf{n}=(a, b, c)$ normal to the plane, and $\mathbf{x}=(x, y, z)$ a point.
- If \mathbf{n} is normalized $\left(a^{2}+b^{2}+c^{2}=1\right)$ then $\mathbf{n} \cdot \mathbf{x}+d$ is the signed distance from \mathbf{x} to the plane.

Homogeneous Coordinates

－In matrix form，the signed distance is
expressed as：$\left[\begin{array}{llll}a & b & c & d\end{array}\right]\left[\begin{array}{l}x \\ y \\ z \\ 1\end{array}\right]=\mathbf{p}^{\top} \mathbf{x}$ ．
－We need the absolute distance as metric．
－Absolute value is awkward so we use square value：$\left(\mathbf{p}^{\top} \mathbf{x}\right)^{2}=\left(\mathbf{p}^{\top} \mathbf{x}\right)^{\top} \mathbf{p}^{\top} \mathbf{x}=\mathbf{x}^{\top} \mathbf{p p}^{\top} \mathbf{x}$

Quadratic Form

- Matrix $\mathbf{Q}=\mathbf{p p}^{\top}$, a.k.a. the outer product of \mathbf{p} with itself, looks like this:

$$
\mathbf{Q}=\left[\begin{array}{l}
a \\
b \\
c \\
d
\end{array}\right]\left[\begin{array}{llll}
a & b & c & d
\end{array}\right]=\left[\begin{array}{llll}
a^{2} & a b & a c & a d \\
b a & b^{2} & b c & b d \\
c a & c b & c^{2} & c d \\
d a & d b & d c & d^{2}
\end{array}\right]
$$

- The squared distance to the plane is $\mathbf{x}^{\top} \mathbf{Q x}$.

Positive Semi-definite Matrix

- It follows that $\mathbf{x}^{\top} \mathbf{Q} \mathbf{x} \geq 0$ for each point \mathbf{x}.
- Such matrix is called positive semi-definite.
- For \mathbf{A} and \mathbf{B} positive semi-definite matrices, the sum $\mathbf{A}+\mathbf{B}$ is also positive semi-definite.
- Partial ordering: $\mathbf{A} \geq \mathbf{B}$ if $\mathbf{A}-\mathbf{B}$ is positive semidefinite.
- Obviously, $\mathbf{x}^{\top} \mathbf{A x} \geq \mathbf{x}^{\top} \mathbf{B x}$ only if $\mathbf{A} \geq \mathbf{B}$.

Quadric Error Metric (QEM)

- The sum of matrices \mathbf{Q}_{i} over all planes i of faces incident to vertex v bounds the squared Hausdorff distance for points
 local to \mathbf{v}.

$$
\mathbf{Q}_{\mathbf{v}}=\mathbf{Q}_{1}+\cdots+\mathbf{Q}_{5}
$$

Quadric Error Metric (Cont'd)

- The set of points \mathbf{x}, for which $\mathbf{x}^{\top} \mathbf{Q} \mathbf{x}=\epsilon^{2}$, is a quadric surface (ellipsoid, elliptical cylinder, or pair of planes).
- Minimum is center (point, line, or plane).

Garland-Heckbert Algorithm

- For each edge $\mathbf{v}_{1} \mathbf{v}_{2}$, compute the position \mathbf{x} that minimizes $\mathbf{x}^{\top}\left(\mathbf{Q}_{1}+\mathbf{Q}_{2}\right) \mathbf{x}$.
- This will be the position of the new vertex $\overline{\mathbf{v}}$ after contraction.
- Queue edges prioritizing on the (squared) error of the new
 vertex position.

Garland-Heckbert Algorithm

- Contract the least-error edge and set $\mathrm{Q}_{1}+\mathrm{Q}_{2}$ as new QEM of the new vertex.
- Recompute the contraction errors for all edges incident to the new vertex, and update their
 queue positions.

Garland-Heckbert Algorithm

- Continue until the desired error or face count has been reached.
- The final error is an upper bound for the actual error.
- The actual error may be a lot
 smaller.

Problem \#1: Multiple Solutions

- System has a unique solution for ellipsoidal QEMs only! Solver fails if minimum is a line or a plane.
- Example:straight edge

flat plane

- Forcing a solution using pseudoinverse is no good. (Prefers solution closest to origin).

Problem \#2: Face Flips

- New vertex lies beyond the faces incident to the contracted edge.

Problem \#2: Face Flips

- Contracting to a vertex that lies beyond the faces incident to the edge results in flipped faces.
- Detect face flips by testing normals of all new faces against old face normals.
- Reject edge if for any incident face the normals are opposite.

Solution：Rubber Band

－Both problems are mitigated by adding an error component that slightly pulls the new vertex to its original vertices．
－The squared distance to a vertex position \mathbf{p} is expressed as $\mathbf{x}^{\top} \mathbf{P x}$ ，where

$$
\mathbf{P}=\left[\begin{array}{cc}
I_{3} & -\mathbf{p} \\
-\mathbf{p} & \|\mathbf{p}\|^{2}
\end{array}\right]
$$

a 4×4 positive semi－definite matrix．

Solution: Rubber Band (cont'd)

- The initial QEM of a vertex is computed as

$$
\mathbf{Q}_{\mathbf{v}}=\mathbf{Q}_{1}+\cdots+\mathbf{Q}_{n}+\mathbf{P} \omega, \text { where } 0<\omega \ll 1 .
$$

"The sum of the squared distances to each of its incident faces plus a tiny fraction of the squared distance to the vertex position"

Solution: Rubber Band (cont'd)

- This results in far less singularities in the solver.
- The minimum position is pulled slightly closer to the contracted edge, resulting in fewer edge rejections due to face flips.
- Generated triangles are generally 'fatter', which is helpful in many applications.

Conservative Mesh Decimation

- Contracting $\mathbf{v}_{1} \mathbf{v}_{\mathbf{2}}$ to minimal point $\overline{\mathbf{v}}$ creates a mesh that does not bound the original mesh.
- Neither is the new mesh bounded by the original mesh.
- How do we decimate the mesh conservatively?

Conservative Mesh Decimation

- For a bounding mesh, the new vertex $\overline{\mathbf{v}}$ should not lie behind any plane supporting a face incident to the edge.
- For an occluder, the new vertex should not lie in front of any such plane.

- Such $\overline{\mathbf{v}}$ is called conservative.

Conservative Mesh Decimation

- The minimal conservative point could lie on zero to three supporting planes.
- Requires solvers for the minimal point in space, on a plane, on a line, and the point of intersection of three planes.

Bounding Mesh Algorithm

- If $\mathbf{Q}_{1}+\mathbf{Q}_{2}$'s minimum point is conservative, it is the new $\overline{\mathbf{v}}$.

Bounding Mesh Algorithm

- If $\mathrm{Q}_{1}+\mathrm{Q}_{2}$'s minimum point is conservative, it is the new $\overline{\mathbf{v}}$.
- Otherwise, $\overline{\mathbf{v}}$ is the closest conservative minimum point on a plane, or...

Bounding Mesh Algorithm

- If $\mathbf{Q}_{1}+\mathbf{Q}_{2}$'s minimum point is conservative, it is the new $\overline{\mathbf{v}}$.
- Otherwise, $\overline{\mathbf{v}}$ is the closest conservative minimum point on a plane, or...
- ... on the intersection of a pair of planes...

Bounding Mesh Algorithm

- ... Or, $\overline{\mathbf{v}}$ is the closest
conservative point of intersection of three planes.
- Worst-case, we compute and test $1+n+\binom{n}{2}+\binom{n}{3}=O\left(n^{3}\right)$ points, for n incident faces.

Quick and Dirty Ranking

- The contraction error is typically computed many times before the edge is contracted.
- In conservative decimation, computing the exact contraction error is expensive!
- Quick and dirty ranking of contraction candidates uses the unconstrained error.
- First-ranking edge is evaluated for a conservative vertex and possibly discarded.

Mesh Boundaries

- Vertices at mesh boundaries tend to wander along the surface away from the boundary.

Mesh Boundaries

- Garland et al. suggest adding a virtual plane orthogonal to the surface at the boundary.

Mesh Boundaries

- Imposing hard constraints on boundary vertices keeps them from wandering.
- Conservative mesh decimation uses constrained solvers for planes and lines.
- We use the same solvers for constraining boundary vertices.
- Edges may have up to two constraint planes.

Patch Stitching

- Patch boundaries are likely to show cracks due to differences in height.
- These cracks subvert the purpose of using occluders since covered objects bleed through.
- Patch boundaries are stitched by adding vertical filler triangles.

Tighter Error Bound

- $\mathbf{Q}_{1}+\mathbf{Q}_{2}$ is not the tightest upper bound for the minimum squared distance.
- There are better ways to construct a \mathbf{Q}, such that $\mathbf{Q} \geq \mathbf{Q}_{1}$ and $\mathbf{Q} \geq \mathbf{Q}_{2}$.
- Better suited if you want to decimate down to a given maximum error rather than a set number of polygons.

References

- J. Hasselgren, M. Andersson, and T. Akenine-Möller. Masked Software Occlusion Culling. Intel Corporation, 2016.
- M. Garland and P. S. Heckbert. Surface simplification using quadric error. Proc. ACM SIGGRAPH, July 1997.
- Andre K. Gaschler. Efficient Geometric Predicates for Integrated Task and Motion Planning. Dissertation, Technische Universität München, Munich, Germany, 2015.
- G. van den Bergen. Upper bound for a pair of positive semidefinite matrices. StackExchange Mathematics, 2019.

Thanks!

Check me out on

- Web: www.dtecta.com
- Twitter: @dtecta
- GitHub: https://github.com/dtecta

