
Understanding and Tracing

Numerical Errors in C++

Gino van den Bergen

Dtecta

Math for Game Developers:

Know Thy Error

xkcd.com, Creative Commons

https://xkcd.com/2110/
https://xkcd.com/license.html
https://xkcd.com/license.html

Computer Numbers

● Digital computer number formats have limited
precision.

● Results of arithmetic operations are rounded to
the nearest representable value.

Fixed-point Numbers

Floating-point Numbers

Floating-point Format

● IEEE 754 single-precision (32-bit) format:

−1 sign × 1. fraction × 2exponent−127

Floating-point Format (cont’d)

● Zero is a special case: exponent and fraction
are zero. Both +0 and –0 exist.

● Subnormal numbers: exponent is zero.

−1 sign × 0.fraction × 2−126

Fills the gap between 0 and 2-126.

A Little Story…

A Little Story… (cont’d)

● World coordinates are single-precision floats.

● The top of the mountain is far, far away
(300km) from the world coordinate origin.

● The little blue engine moves by forward
Euler:
 pn+1 = pn + vh

A Little Story… (cont’d)

● The little engine tugged and pulled up the
mountain and slowly, slowly, slowly, …

● … came to a grinding halt.

● What happened?

● At this distance from the origin pn + vh is
rounded to pn even though vh is not zero.

Big Worlds

● Prefer fixed-point for storing world
coordinates.

● Fixed-point warrants same numerical
behavior anywhere in your game world.

● Optionally, keep a float for storing the
remainder after rounding to fixed-point unit.

● Also, prefer fixed-point for absolute time.

Relative Error

● For each real number 𝑎 ∈ [2𝑛, 2𝑛+1], there
exists a floating-point number 𝑎 ∈ [2𝑛, 2𝑛+1],
such that 𝑎 − 𝑎 ≤ 2𝑛−𝑝, where 𝑝 is the
precision (bit-width of fraction plus one).

Relative Error (cont’d)

● There exists an 𝑟, such that 𝑎 = 𝑎(1 + 𝑟), and
𝑟 ≤ 2−𝑝.

● 𝜀 = 2−𝑝 is the machine epsilon, an upper
bound on the relative error.

● For single-precison, 𝜀 = 2−24, which is half
FLT_EPSILON (the difference between 1 and

the smallest float > 1).

Relative Error (cont’d)

● A single rounding operation results in a
relative error that is no greater than 𝜀.

● Errors accumulate with each operation.

● Notably subtracting two almost equal
floating-point values introduces a large
relative error.

Cancellation

● We have numbers 𝑎 = 𝑎(1 + 𝑟𝑎) and 𝑏 =
𝑏 1 + 𝑟𝑏 already contaminated by rounding.

● The difference 𝑑 = 𝑎 − 𝑏 is computed as

 𝑑 = (𝑎 − 𝑏)(1 + 𝜀) = (𝑎 − 𝑏)(1 + 𝑟𝑑), where

 𝑟𝑑 ≤
𝑎 𝑟𝑎 + 𝑏 𝑟𝑏

𝑎−𝑏
+ 𝜀

Cancellation (cont’d)

● Suppose that 𝑎 and 𝑏 are almost equal.
Then, 𝑟𝑑 can be huge.

 1.111111110001010110110110 × 2−5

 1.111111110001010110011110 × 2−5

 1.100000000000000000000000 × 2−25

Cancellation (cont’d)

● In this example, the 20 least-significant bits
(red zeroes) in the fraction are garbage.

● This loss of significant bits is called
cancellation, and is the main source of
numerical issues.

Example: Face Normals

● Compute normal of triangle by taking the
cross product of two of its edges.

Example: Face Normals (cont’d)

● Choice of edges is arbitrary. Length of cross
product is always twice the triangle’s area.

Example: Face Normals (cont’d)

● Pick the two shortest edges for the smallest
round-off error.

Order of Operations

● In floating-point arithmetic the following
may not be true!

 𝑎 + 𝑏 + 𝑐 = 𝑎 + 𝑏 + 𝑐
𝑎 𝑏 + 𝑐 = 𝑎𝑏 + 𝑎𝑐

● The order in which operations are evaluated
can have a great effect on the error.

Example: Determinants in GJK

● Johnson’s algorithm in GJK computes
determinants as products of 𝐲𝑖 ∙ (𝐲𝑗 − 𝐲𝑘).

● Expressing these factors as 𝐲𝑖 ∙ 𝐲𝑗 − 𝐲𝑖 ∙ 𝐲𝑘 is

way less robust!

● Factorize! Always try to perform additions
and subtractions before multiplications.

Automatic Error Tracing in C++

● Make floating-point types abstract types.

● Quickly tell a numerical issue from a bug by
substituting double or higher precision.

● Maintain a bound for the relative error by
substituting the ErrorTracer proxy class.

Abstract Numerical Types

● Never use built-in floating-point types, such
as float or double, explicitly.

● Rather, use a type name, e.g. Scalar:

 using Scalar = float;

And hide the actual float type in your code.

Abstract Numerical Types (cont’d)

● Never use float literals, C-style casts, or
static_cast for initialization or conversion,
e.g. use

 Scalar(2),

rather than 2.0f, (Scalar)2, or
static_cast<Scalar>(2).

Abstract Numerical Types (cont’d)

● Use a traits class for type-dependent
constants, e.g. use

std::numeric_limits<Scalar>::epsilon()

rather than FLT_EPSILON.

Abstract Numerical Types (cont’d)

● Use the overloaded C++ math functions
from <cmath> rather than the C math
functions from <math.h>, e.g use

 sqrt(x) or std::sqrt(x),

rather than sqrtf(x) or std::sqrtf(x).

ErrorTracer<T>

template <typename T>

class ErrorTracer

{

…

private:

 T mValue; // value of the scalar

 T mError; // max. relative error

};

ErrorTracer<T>: Operators

template <typename T>

ErrorTracer<T> operator-(const ErrorTracer<T>& x,

 const ErrorTracer<T>& y)

{

 T value = x.value() - y.value();

 T error = abs(x.value()) * x.error() +

 abs(y.value()) * y.error();

 return ErrorTracer<T>(value,

 !iszero(value) ? error / abs(value) + T(1) : T());

}

ErrorTracer<T>: Math Functions

template <typename T>

ErrorTracer<T> sqrt(const ErrorTracer<T>& x)

{

 return ErrorTracer<T>(sqrt(x.value()),

 x.error() * T(0.5) + T(1));

}

ErrorTracer<T>

● ErrorTracer transparently replaces built-in
types:

using Scalar = ErrorTracer<float>;

ErrorTracer<T> Reporting

● ErrorTracer reports the relative error

float r = x.maxRelativeError();

● And the number of contaminated bits

float b = x.dirtyBits();

True Relative Error

● FPUs may use higher precision for
intermediate results (FLT_EVAL_METHOD).

● Therefore, the error returned by ErrorTracer
may be hugely overestimated.

● Great for checking where precision is lost.

● YMMV, if you need tight upper bounds for
error.

Conclusions

● Caution with floating-point types for position
and absolute time.

● Choose a formulation that uses the smallest
input values.

● Factorize! Additions and subtractions first.

● Abstract from numerical types in C++ code.

● Know the cause of precision loss.

References

● D. Goldberg. What every computer scientist should know
about floating-point arithmetic. ACM Computing Surveys,
23(1):5-48, March 1991.

● C. Ericson. Numerical Robustness for Geometric
Calculations. GDC 2005 Tutorial.

● G. van den Bergen. Collision Detection in Interactive 3D
Environments. Morgan Kaufmann Publishers, 2003.

● G. van den Bergen. Math for Game Programmers:
Dual Numbers. GDC 2013 Tutorial.

https://docs.oracle.com/cd/E19957-01/806-3568/ncg_goldberg.html
https://docs.oracle.com/cd/E19957-01/806-3568/ncg_goldberg.html
https://docs.oracle.com/cd/E19957-01/806-3568/ncg_goldberg.html
https://docs.oracle.com/cd/E19957-01/806-3568/ncg_goldberg.html
https://docs.oracle.com/cd/E19957-01/806-3568/ncg_goldberg.html
https://docs.oracle.com/cd/E19957-01/806-3568/ncg_goldberg.html
http://realtimecollisiondetection.net/pubs/GDC05_Ericson_Numerical_Robustness_for_Geometric_Calculations.ppt
http://realtimecollisiondetection.net/pubs/GDC05_Ericson_Numerical_Robustness_for_Geometric_Calculations.ppt
http://realtimecollisiondetection.net/pubs/GDC05_Ericson_Numerical_Robustness_for_Geometric_Calculations.ppt
http://dtecta.com/publications
http://dtecta.com/publications
http://www.dtecta.com/files/GDC13_vandenBergen_Gino_Math_Tut.pdf
http://www.dtecta.com/files/GDC13_vandenBergen_Gino_Math_Tut.pdf
http://www.dtecta.com/files/GDC13_vandenBergen_Gino_Math_Tut.pdf

Thank You!

Check me out on

● Web: www.dtecta.com

● Twitter: @dtecta

● ErrorTracer C++ code available in MoTo:
https://github.com/dtecta/motion-toolkit

http://www.dtecta.com/
https://twitter.com/dtecta
https://twitter.com/dtecta
https://twitter.com/dtecta
https://github.com/dtecta/motion-toolkit
https://github.com/dtecta/motion-toolkit
https://github.com/dtecta/motion-toolkit

Interval Arithmetic (bonus)

● Maintain an upper and lower bound of a
computed value (true value included).

● Requires changing of FPU rounding policy.

● Tighter, yet computationally way more
expensive, than ErrorTracer.

● Boost Interval Arithmetic Library implements
this for C++.

https://www.boost.org/doc/libs/1_69_0/libs/numeric/interval/doc/interval.htm

