Math for Game Developers: Understanding and Tracing Numerical Errors in C++

Gino van den Bergen
Dtecta

Know Thy Error

I DON'T KNOW HOW TO PROPAGATE ERROR CORRECTLY, SO I JUST PUT ERROR BARS ON ALL MY ERROR BARS.

Computer Numbers

- Digital computer number formats have limited precision.
- Results of arithmetic operations are rounded to the nearest representable value.

Fixed-point Numbers

-																								
-																								
-																								
-																								
-																								
-																								
										-														
-											-													
										-			-											

GAME DEVELOPERS CONFERENCE

Floating-point Numbers

Floating-point Format

- IEEE 754 single-precision (32-bit) format:
$(-1)^{\text {sign }} \times 1$. fraction $\times 2^{\text {exponent }-127}$

Floating-point Format (cont'd)

- Zero is a special case: exponent and fraction are zero. Both +0 and -0 exist.
- Subnormal numbers: exponent is zero.

$$
(-1)^{\operatorname{sign}} \times 0 . \text { fraction } \times 2^{-126}
$$

Fills the gap between 0 and 2^{-126}.

A Little Story...

A Little Story... (cont'd)

- World coordinates are single-precision floats.
- The top of the mountain is far, far away (300km) from the world coordinate origin.
- The little blue engine moves by forward Euler:

$$
\mathbf{p}_{\mathrm{n}+1}=\mathbf{p}_{\mathrm{n}}+\mathbf{v} h
$$

A Little Story... (cont'd)

- The little engine tugged and pulled up the mountain and slowly, slowly, slowly, ...
- ... came to a grinding halt.
- What happened?
- At this distance from the origin $\mathbf{p}_{\mathrm{n}}+\mathbf{v} h$ is rounded to \mathbf{p}_{n} even though $\mathbf{v} h$ is not zero.

Big Worlds

- Prefer fixed-point for storing world coordinates.
- Fixed-point warrants same numerical behavior anywhere in your game world.
- Optionally, keep a float for storing the remainder after rounding to fixed-point unit.
- Also, prefer fixed-point for absolute time.

Relative Error

- For each real number $a \in\left[2^{n}, 2^{n+1}\right]$, there exists a floating-point number $\tilde{a} \in\left[2^{n}, 2^{n+1}\right]$, such that $|a-\tilde{a}| \leq 2^{n-p}$, where p is the precision (bit-width of fraction plus one).

Relative Error (cont'd)

- There exists an r, such that $\tilde{a}=a(1+r)$, and $|r| \leq 2^{-p}$.
- $\varepsilon=2^{-p}$ is the machine epsilon, an upper bound on the relative error.
- For single-precison, $\varepsilon=2^{-24}$, which is half FLT_EPSILON (the difference between 1 and the smallest float >1).

Relative Error (cont'd)

- A single rounding operation results in a relative error that is no greater than ε.
- Errors accumulate with each operation.
- Notably subtracting two almost equal floating-point values introduces a large relative error.

Cancellation

- We have numbers $\tilde{a}=a\left(1+r_{a}\right)$ and $\tilde{b}=$ $b\left(1+r_{b}\right)$ already contaminated by rounding.
- The difference $d=a-b$ is computed as

$$
\tilde{d}=(\tilde{a}-\tilde{b})(1+\varepsilon)=(a-b)\left(1+r_{d}\right), \text { where }
$$

$$
\left|r_{d}\right| \leq \frac{\left|a r_{a}\right|+\left|b r_{b}\right|}{|a-b|}+\varepsilon
$$

Cancellation (cont'd)

- Suppose that a and b are almost equal. Then, $\left|r_{d}\right|$ can be huge.

$$
-\begin{aligned}
& 1.111111110001010110110110 \times 2^{-5} \\
& 1.111111110001010110011110 \times 2^{-5} \\
& \hline 1.100000000000000000000000 \times 2^{-25}
\end{aligned}
$$

Cancellation (cont'd)

- In this example, the 20 least-significant bits (red zeroes) in the fraction are garbage.
- This loss of significant bits is called cancellation, and is the main source of numerical issues.

Example: Face Normals

- Compute normal of triangle by taking the cross product of two of its edges.

Example: Face Normals (cont'd)

- Choice of edges is arbitrary. Length of cross product is always twice the triangle's area.

Example: Face Normals (cont'd)

- Pick the two shortest edges for the smallest round-off error.

Order of Operations

- In floating-point arithmetic the following may not be true!

$$
\begin{aligned}
a+(b+c) & =(a+b)+c \\
a(b+c) & =a b+a c
\end{aligned}
$$

- The order in which operations are evaluated can have a great effect on the error.

Example: Determinants in GJK

- Johnson's algorithm in GJK computes determinants as products of $\mathbf{y}_{i} \cdot\left(\mathbf{y}_{j}-\mathbf{y}_{k}\right)$.
- Expressing these factors as $\mathbf{y}_{i} \cdot \mathbf{y}_{j}-\mathbf{y}_{i} \cdot \mathbf{y}_{k}$ is way less robust!
- Factorize! Always try to perform additions and subtractions before multiplications.

Automatic Error Tracing in C++

- Make floating-point types abstract types.
- Quickly tell a numerical issue from a bug by substituting double or higher precision.
- Maintain a bound for the relative error by substituting the ErrorTracer proxy class.

Abstract Numerical Types

- Never use built-in floating-point types, such as float or double, explicitly.
- Rather, use a type name, e.g. Scalar:
using Scalar = float;

And hide the actual float type in your code.

Abstract Numerical Types (cont'd)

- Never use float literals, C-style casts, or static_cast for initialization or conversion, e.g. use
Scalar(2),
rather than 2.0f, (Scalar)2, or static_cast<Scalar>(2).

Abstract Numerical Types (cont'd)

- Use a traits class for type-dependent constants, e.g. use
std::numeric_limits<Scalar>::epsilon()
rather than FLT_EPSILON.

Abstract Numerical Types (cont'd)

- Use the overloaded C++ math functions from <cmath> rather than the C math functions from <math.h>, e.g use
sqrt(x) or std::sqrt(x),
rather than sqrtf(x) or std::sqrtf(x).

ErrorTracer<T>

template <typename T>
class ErrorTracer
\{
private:
T mValue; // value of the scalar T mError; // max. relative error

ErrorTracer<T>: Operators

template <typename T>
ErrorTracer $<T>$ operator-(const ErrorTracer $<T>\& \quad \mathrm{X}$, const ErrorTracer $\langle T\rangle \& \quad y)$
\{

```
T value = x.value() - y.value();
T error = abs(x.value()) * x.error() +
    abs(y.value()) * y.error();
return ErrorTracer<T>(value,
    !iszero(value) ? error / abs(value) + T(1) : T());
```


ErrorTracer<T>: Math Functions

```
template <typename T>
ErrorTracer<T> sqrt(const ErrorTracer<T>& x)
{
    return ErrorTracer<T>(sqrt(x.value()),
    x.error() * T(0.5) + T(1));
```

\}

ErrorTracer<T>

- ErrorTracer transparently replaces built-in types:
using Scalar = ErrorTracer<float>;

ErrorTracer<T> Reporting

- ErrorTracer reports the relative error
float r = x.maxRelativeError();
- And the number of contaminated bits
float b = x.dirtyBits();

True Relative Error

- FPUs may use higher precision for intermediate results (FLT_EVAL_METHOD).
- Therefore, the error returned by ErrorTracer may be hugely overestimated.
- Great for checking where precision is lost.
- YMMV, if you need tight upper bounds for error.

Conclusions

- Caution with floating-point types for position and absolute time.
- Choose a formulation that uses the smallest input values.
- Factorize! Additions and subtractions first.
- Abstract from numerical types in C++ code.
- Know the cause of precision loss.

References

- D. Goldberg. What every computer scientist should know about floating-point arithmetic. ACM Computing Surveys, 23(1):5-48, March 1991.
- C. Ericson. Numerical Robustness for Geometric Calculations. GDC 2005 Tutorial.
- G. van den Bergen. Collision Detection in Interactive 3D Environments. Morgan Kaufmann Publishers, 2003.
- G. van den Bergen. Math for Game Programmers: Dual Numbers. GDC 2013 Tutorial.

Thank You!

Check me out on

- Web: www.dtecta.com
- Twitter: @dtecta
- ErrorTracer C++ code available in MoTo: https://github.com/dtecta/motion-toolkit

Interval Arithmetic (bonus)

- Maintain an upper and lower bound of a computed value (true value included).
- Requires changing of FPU rounding policy.
- Tighter, yet computationally way more expensive, than ErrorTracer.
- Boost Interval Arithmetic Library implements this for $\mathrm{C}++$.

