
Math for Game Programmers:
Inverse Kinematics Revisited

Gino van den Bergen
3D Programmer (Dtecta)
gino@dtecta.com

Uhhh… Inverse Kinematics?

Problem Description

● We have a bunch of rigid bodies aka links
(aka bones).

● Pairs of links are connected by joints.

● A joint limits the degrees of freedom
(DoFs) of one link relative to the other.

● Connection graph is a tree. No loops!

Problem Description (cont’d)

● Let’s consider 1-DoF joints only:

● Revolute: single-axis rotation aka hinge.

● Prismatic: single-axis translation aka slider.

● Positions and velocities of links are
defined by the values and speeds of the
scalar joint parameters (angles,
distances).

Problem Description (cont’d)

Link

Link

Revolute
Joint

Problem Description (cont’d)

● Given some constraints on the poses and
velocities of one or more links, compute a
vector of joint parameters that satisfies
the constraints.

● The constrained links are called end-
effectors, and are usually (but not per se)
the end-links of a linkage.

Free vs. Fixed Joints

● Usually, only a few joints are free. Free
joints are available for constraint
resolution.

● The other joints are controlled by forward
kinematics. Their positions and velocities
are fixed at a given instance of time.

Part I: Angular Constraints

Rotations in 3D

● Have three degrees of freedom (DoFs).

● Do not commute: R1R2 ≠ R2R1

● Can be parameterized by three angles
about predefined axes (Euler angles).

● Angle parameterization is not ideal for
doing math (gimbal lock).

Quaternions

● Quaternions extend complex numbers

q = a + bi + cj + dk

where a, b, c and d are real numbers

● a is the real or scalar part, and

● (b, c, d) is the imaginary or vector part.

Quaternions (cont’d)

● Quaternions behave as 4D vectors w.r.t.
addition and scaling.

● In multiplications, the imaginary units
resolve as: i2 = j2 = k2 = ijk = -1

● In scalar-vector notation, multiplication is
given by: [s1, v1][s2, v2] =
[s1s2 - v1 • v2, s1v2 + s2v1 + v1 × v2]

Quaternion Conjugate

● The conjugate of quaternion q, denoted
by q*, is defined by
(a + bi + cj + dk)* = a - bi - cj - dk

● Multiplication of a quaternion by its
conjugate yields its squared magnitude:
qq* = q*q = a2 + b2 + c2 + d2

Unit Quaternions

● Unit quaternions (points on sphere in 4D)
form a multiplicative subgroup.

● A rotation with angle θ about unit vector
u is represented by unit quaternion

 cos
𝜃

2
, sin

𝜃

2
𝐮

Rotations using Unit Quaternions

● The so-called sandwich product performs
a rotation: v’ = q v q*

● The vector v is regarded as a pure
imaginary quaternion.

● The conjugate is the inverse rotation:
v = q* v’ q

Kinematic Chain

● In a chain of links, ri is the relative
rotation from link i to its parent link i – 1.

● The rotation from a link i to the world
frame is simply qi = r1⋯ ri, the product of
relative rotations in the chain up to link i.

● The rotation from link i to link j is: qj*qi
(even if i and j are on different chains).

There’s a Twist…

● Unit quaternions q and −q represent the

same orientation.

● For computing the rotation qj*qi from qi

to qj, make sure that qi and qj point in the
same direction (qi • qj > 0), if necessary,
by negating either qi or qj.

● Otherwise, qj*qi takes an extra spin.

Angular Velocity

● The angular velocity of a rigid body is a
3D vector.

● Its direction points along the rotation axis
following the right-hand rule.

● Its magnitude is the rotational speed in
radians per second.

Angular Velocity

● Angular velocity is
a proper vector:

● The angular
velocity of a link is
the sum of all joint
velocities along the
chain.

Angular Velocity Demo

Joint Velocity

● The directions of the joint axes 𝐚𝑖 form a
vector space for the angular velocity 𝛚 of
an end-effector:

𝛚 = 𝐚1𝜃 1 +⋯+ 𝐚𝑛𝜃 𝑛

● Here, 𝜃 𝑖 are the joint speeds in radians
per second.

Joint Velocity (cont’d)

● In matrix notation this looks like

𝛚 =
⋮ ⋮
𝐚1 ⋯ 𝐚𝑛
⋮ ⋮

𝜃 1
⋮
𝜃 𝑛

● The matrix columns are the n joint axes.

Joint Axis Direction

● Given qi, link i’s rotation relative to the
world frame, the direction of the joint
axis is the local rotation axis ui in world
coordinates:

𝐚𝑖 = 𝐪𝑖𝐮𝑖𝐪𝑖
∗

Velocity Constraints

● A velocity constraint is defined by a linear
function that maps velocities to vectors.

● The dimension of the resulting vector is
the number of constrained DoFs.

● The constraint is satisfied if the function
returns the target value (usually zero).

Rotational Axis Constraint

● Constrains the axis of rotation of an end-
effector link to some target axis.

● For example, for constraint function

𝐶 𝛚 = 𝛚x, 𝛚y , imposing 𝐶 𝛚 = 𝟎

restricts the axis to the Z-axis.

Constraint Matrix

● A constraint involving a linear function 𝐶
and target 𝐭 can be expressed as

𝐶 𝛚 = 𝐶(
⋮ ⋮

𝐚1) ⋯ 𝐶(𝐚𝑛)

⋮ ⋮

𝜃 1
⋮
𝜃 𝑛

= 𝐭

Free & Fixed Joint Parameters

● Move the fixed joint parameters over to
the right-hand side

⋮ ⋮
𝐶(𝐚𝑙+1) ⋯ 𝐶(𝐚𝑛)

⋮ ⋮

𝜃 𝑙+1
⋮
𝜃 𝑛

= 𝐭 − 𝐶(𝐚1)𝜃 1 +⋯+ 𝐶(𝐚𝑙)𝜃 𝑙

● Here, only 𝜃 𝑙+1to 𝜃 𝑛 are variables.

Jacobian Matrix

● The remaining matrix expresses the
influence of variable joint speeds on the
constraint function.

● This is in fact the Jacobian matrix.

● #rows = #constrained DoFs.

● #colums = #free joint parameters.

No Inverse

● The Jacobian matrix generally does not
have an inverse.

● Often the matrix is not square, and thus
not invertible.

● Square Jacobians may not be invertible,
since they can have dependent columns.

Too Few Variables

● The constraints fix more DoFs than there
are variables:

𝐽 = 𝐶(
⋮ ⋮

𝐚𝑛−1) 𝐶(𝐚𝑛
⋮ ⋮

)

● Likely, no solution exists. We settle for a
best-fit solution.

Too Many Variables

● The constraints fix fewer DoFs than there
are variables:

𝐽 =
⋮ ⋮

𝐶(𝐚𝑛−3) ⋯ 𝐶(𝐚𝑛)

⋮ ⋮

● Infinitely many solutions may exist. We
seek the lowest speed solution.

Pseudoinverse

● The Moore-Penrose pseudoinverse 𝐽+ is

 𝐽T𝐽
−1
𝐽T if #rows ≥ #colums

 𝐽T 𝐽𝐽T
−1

 if #rows ≤ #colums

● Giving:

𝜃 𝑙+1
⋮
𝜃 𝑛

= 𝐽+ 𝐭 − 𝐶(𝐚1)𝜃 1 +⋯+ 𝐶(𝐚𝑙)𝜃 𝑙

Pseudoinverse (cont’d)

● If no solution exists, returns a best-fit
(least-squares) solution.

● If infinitely many solutions exist, returns
the least-norm (lowest speed) solution.

● If an inverse exists, the pseudoinverse is
the inverse.

Computing the Pseudoinverse

● 𝐽+can be computed using open-source

linear-algebra packages (Eigen,
Armadillo+LAPACK).

● Cubic complexity! (𝑂 𝑛3 for n variables)

● Decimate into smaller Jacobians, rather
than solve one huge Jacobian.

Gimbal Lock Demo

Positional Error

● Constraint solving happens at sampled
intervals.

● Jacobian is falsely assumed to be fixed
in-between samples.

● Positional error builds up (drift).

Positional Error (cont’d)

● Correct error by adding a stabilization
term to the target vector:

𝐽+ 𝐭 − 𝐶(𝐚1)𝜃 1 +⋯+ 𝐶(𝐚𝑙)𝜃 𝑙 + 𝐬

Corrects
error

Positional Error (cont’d)

● We choose 𝐬 = 𝐶(𝛚diff), where 𝛚diff is the

angular velocity that closes the gap
between 𝐪𝑛 and 𝐪𝑡 ,
the orientations of
resp. end-effector
and target.

𝐪𝑛 𝐪𝑡

𝛚diff

Positional Error (cont’d)

● A useful approximation for 𝛚diff is the
vector part of

𝛽
2
ℎ
𝐪𝑡𝐪𝑛

∗

● Here, ℎ is the time interval.

● Factor 𝛽 (< 1) relaxes correction speed.

● N.B.: Mind the extra spin when 𝐪𝑛 • 𝐪𝑡< 0!

Part II: Rigid-Body Constraints

Chasles’ Theorem

● A screw is a rotation about a
line and a translation along
the same line.

● “Any rigid-body displacement
can be defined by a screw.”
(Michel Chasles, 1830)

Chasles’ Theorem Demo

Screw Theory

● “By replacing vectors
(directions) with Plücker
coordinates (lines), point
entities (angular velocity,
force) transfer to rigid-body
entities (twist, wrench).”
(Sir Robert Stawell Ball, 1876)

Dual Quaternions

● Quaternion algebra is extended by
introducing a dual unit ε.

● Elements are 1, i, j, k, ε, iε, jε, and kε.

● A dual quaternion is expressed as:
 𝐪 = 𝐪 + 𝐪′𝜀
We call 𝐪 the real part and 𝐪′ the dual

part.

Dual Quaternions (cont’d)

● In multiplications, the dual unit resolves
as ε2 =0, giving: 𝐪1 + 𝐪1

′ 𝜀 𝐪2 + 𝐪2
′ 𝜀

 = 𝐪1𝐪2 + 𝐪1𝐪2

′ + 𝐪1
′ 𝐪2 𝜀 + 0

● Real part is the product of real parts
only; it does not depend on dual parts!

Dual Quaternions (cont’d)

● The conjugate of a dual quaternion:

 𝐪 ∗ = (𝐪 + 𝐪′𝜀)∗= 𝐪∗ + 𝐪′

∗
𝜀

● Multiplication of a dual quaternion by its
conjugate yields its squared magnitude:

𝐪 + 𝐪′𝜀 𝐪 + 𝐪′𝜀 ∗ = 𝐪𝐪∗ + 𝐪𝐪′
∗
+ 𝐪′𝐪∗ 𝜀

Dual Quaternions (cont’d)

● Unit dual quaternions (1 + 0𝜀) represent

rigid body displacements aka poses.

● The rigid body pose given by unit (real)
quaternion 𝐪 and translation vector 𝐭 is:

 𝐪 +
1

2
𝐭𝐪𝜀

𝐭 is considered a pure
imaginary quaternion

(zero scalar part).

Where is the Screw?

● A unit dual quaternion can be written as

 cos
𝜃 + 𝑑𝜀

2
, sin

𝜃 + 𝑑𝜀

2
(𝐮 + 𝐯𝜀)

θ is the rotation angle,
d is the translation distance, and
u + v𝜀 is the screw axis as unit dual vector

(Plücker coordinates).

Linear Velocity

● Linear velocity, unlike angular velocity, is
bound to a point in space:

Linear Velocity (cont’d)

● Given angular velocity 𝛚, and linear
velocity 𝐯 at point 𝐩, the linear velocity at
an arbitrary point 𝐱 is 𝐯 + 𝛚 × (𝐱 − 𝐩).

𝐩
𝐱

Plücker Coordinates

● Angular and linear velocity are combined
into a single entity represented by a dual
vector (aka Plücker coordinates):

𝐯 = 𝛚 + 𝐯𝑜𝜀

● Here, 𝐯𝑜 is the linear velocity at the origin
of the coordinate frame.

Plücker Coordinates Demo

Transforming Plücker Coordinates

● The dual-quaternion sandwich product
performs a rigid-body transformation on
Plücker coordinates:

𝐯′ = 𝐪 𝐯 𝐪 ∗

● This transformation preserves

magnitude: 𝐯′ • 𝐯′ = 𝐯 • 𝐯

Deja Vu?

● The (combined) velocity of a link is the
sum of all joint velocities along the chain.

● The joint axes 𝐚 𝑖 form a vector space for
the velocity 𝐯 of an end-effector:

𝐯 = 𝐚 1𝜃 1 +⋯+ 𝐚 𝑛𝜃 𝑛

● Here, 𝜃 𝑖 are the revolute and prismatic

joint speeds.

Deja Vu? (cont’d)

● For 𝐪 𝑖, link i’s pose expressed in the
world frame, 𝐮 𝑖, the local joint axis, the
joint axis in world coordinates is

𝐚 𝑖 = 𝐪 𝑖𝐮 𝑖𝐪 𝑖
∗

● For a revolute: For a prismatic:
𝐮 𝑖 = 𝐮𝑖 + 𝟎𝜀 𝐮 𝑖 = 𝟎 + 𝐯𝑖𝜀

Deja Vu? (cont’d)

● To correct the positional error between
end-effector and target, we choose the
correction velocity 𝐯 diff to be the vector

part of

𝛽
2
ℎ𝐪 𝑡𝐪 𝑛

∗

The Principle of Transference

Angular Entities Rigid-body Entities

Rotation unit quaternion Pose (screw) unit dual quaternion

Angular
velocity

3-vector Combined
velocity

dual 3-vector

Direction unit 3-vector Line unit dual 3-vector

Rotation
parameter

angle (radians) Screw
parameters

dual angle (radians,
meter)

Spherical
coordinates
(azi, polar)

pair of angles Denavit-
Hartenberg
parameters

pair of dual angles

References

● K. Shoemake. Plücker Coordinate Tutorial. Ray Tracing
News, Vol. 11, No. 1

● R. Featherstone. Spatial Vectors and Rigid Body Dynamics.
http://royfeatherstone.org/spatial.

● L. Kavan et al. Skinning with dual quaternions. Proc. ACM
SIGGRAPH Symposium on Interactive 3D Graphics and
Games, 2007.

● G. van den Bergen. Math for Game Programmers:
Dual Numbers. GDC 2013 Tutorial.

http://tog.acm.org/resources/RTNews/html/rtnv11n1.html
http://tog.acm.org/resources/RTNews/html/rtnv11n1.html
http://tog.acm.org/resources/RTNews/html/rtnv11n1.html
http://tog.acm.org/resources/RTNews/html/rtnv11n1.html
http://royfeatherstone.org/spatial
http://royfeatherstone.org/spatial
http://royfeatherstone.org/spatial
http://royfeatherstone.org/spatial
http://www.dtecta.com/files/GDC13_vandenBergen_Gino_Math_Tut.pdf

Open-Source Code

● Eigen: A C++ Linear Algebra Library.
http://eigen.tuxfamily.org. License: MPL2

● Armadillo: C++ Linear Algebra Library.
http://arma.sourceforge.net. License: MPL2

● LAPACK – Linear Algebra PACKage.
http://www.netlib.org/lapack. License: BSD

● MoTo C++ template library (dual quaternion code)
https://code.google.com/p/motion-toolkit/. License: MIT

http://eigen.tuxfamily.org/
http://arma.sourceforge.net/
http://arma.sourceforge.net/
http://www.netlib.org/lapack
http://www.netlib.org/lapack
http://www.netlib.org/lapack
https://code.google.com/p/motion-toolkit/
https://code.google.com/p/motion-toolkit/
https://code.google.com/p/motion-toolkit/
https://code.google.com/p/motion-toolkit/
https://code.google.com/p/motion-toolkit/

Thank You!

My pursuits can be traced on:

● Web: http://www.dtecta.com

● Twitter: @dtecta

● Or just mail me: gino@dtecta.com

http://www.dtecta.com/
https://twitter.com/dtecta
https://twitter.com/dtecta
https://twitter.com/dtecta
mailto:gino@dtecta.com

