Math for Game Programmers:

 Inverse Kinematics RevisitedGino van den Bergen
3D Programmer (Dtecta)
gino@dtecta.com

Uhhh... Inverse Kinematics?

Problem Description

- We have a bunch of rigid bodies aka links (aka bones).
- Pairs of links are connected by joints.
- A joint limits the degrees of freedom (DoFs) of one link relative to the other.
- Connection graph is a tree. No loops!

Problem Description (cont'd)

- Let's consider 1-DoF joints only:
- Revolute: single-axis rotation aka hinge.
- Prismatic: single-axis translation aka slider.
- Positions and velocities of links are defined by the values and speeds of the scalar joint parameters (angles, distances).

Problem Description (cont'd)

Problem Description (cont'd)

- Given some constraints on the poses and velocities of one or more links, compute a vector of joint parameters that satisfies the constraints.
- The constrained links are called endeffectors, and are usually (but not per se) the end-links of a linkage.

Free vs. Fixed Joints

- Usually, only a few joints are free. Free joints are available for constraint resolution.
- The other joints are controlled by forward kinematics. Their positions and velocities are fixed at a given instance of time.

Part I: Angular Constraints

Rotations in 3D

- Have three degrees of freedom (DoFs).
- Do not commute: $R_{1} R_{2} \neq R_{2} R_{1}$
- Can be parameterized by three angles about predefined axes (Euler angles).
- Angle parameterization is not ideal for doing math (gimbal lock).

Quaternions

- Quaternions extend complex numbers

$$
\mathbf{q}=a+b i+c j+d k
$$

where a, b, c and d are real numbers

- a is the real or scalar part, and
- (b, c, d) is the imaginary or vector part.

Quaternions (cont'd)

- Quaternions behave as 4D vectors w.r.t. addition and scaling.
- In multiplications, the imaginary units resolve as: $i^{2}=j^{2}=k^{2}=i j k=-1$
- In scalar-vector notation, multiplication is given by: $\left[s_{1}, \mathbf{v}_{1}\right]\left[s_{2}, \mathbf{v}_{2}\right]=$ $\left[s_{1} s_{2}-\mathbf{v}_{1} \cdot \mathbf{v}_{2}, s_{1} \mathbf{v}_{2}+s_{2} \mathbf{v}_{1}+\mathbf{v}_{1} \times \mathbf{v}_{2}\right]$

Quaternion Conjugate

- The conjugate of quaternion \mathbf{q}, denoted by \mathbf{q}^{*}, is defined by
$(a+b i+c j+d k)^{*}=a-b i-c j-d k$
- Multiplication of a quaternion by its conjugate yields its squared magnitude: $\mathbf{q} \mathbf{q}^{*}=\mathbf{q}^{*} \mathbf{q}=a^{2}+b^{2}+\mathbf{c}^{2}+\mathrm{d}^{2}$

Unit Quaternions

- Unit quaternions (points on sphere in 4D) form a multiplicative subgroup.
- A rotation with angle θ about unit vector \mathbf{u} is represented by unit quaternion

$$
\left[\cos \left(\frac{\theta}{2}\right), \sin \left(\frac{\theta}{2}\right) \mathbf{u}\right]
$$

Rotations using Unit Quaternions

- The so-called sandwich product performs a rotation: $\mathbf{v}^{\prime}=\mathbf{q} \mathbf{v} \mathbf{q}^{*}$
- The vector \mathbf{v} is regarded as a pure imaginary quaternion.
- The conjugate is the inverse rotation:
$\mathbf{v}=\mathbf{q}^{*} \mathbf{v}^{\prime} \mathbf{q}$

Kinematic Chain

- In a chain of links, \mathbf{r}_{i} is the relative rotation from link i to its parent link $i-1$.
- The rotation from a link i to the world frame is simply $\mathbf{q}_{i}=\mathbf{r}_{1} \cdots \mathbf{r}_{i}$, the product of relative rotations in the chain up to link i.
- The rotation from link i to link j is: $\mathbf{q}_{j}{ }^{*} \mathbf{q}_{i}$ (even if i and j are on different chains).

There's a Twist...

- Unit quaternions \mathbf{q} and $-\mathbf{q}$ represent the same orientation.
- For computing the rotation $\mathbf{q}_{j}{ }^{*} \mathbf{q}_{i}$ from \mathbf{q}_{i} to \mathbf{q}_{j}, make sure that \mathbf{q}_{i} and \mathbf{q}_{j} point in the same direction ($\mathbf{q}_{i} \bullet \mathbf{q}_{j}>0$), if necessary, by negating either \mathbf{q}_{i} or \mathbf{q}_{j}.
- Otherwise, $\mathbf{q}_{j}{ }^{*} \mathbf{q}_{i}$ takes an extra spin.

Angular Velocity

- The angular velocity of a rigid body is a 3D vector.
- Its direction points along the rotation axis following the right-hand rule.
- Its magnitude is the rotational speed in radians per second.

Angular Velocity

- Angular velocity is a proper vector:
- The angular velocity of a link is the sum of all joint velocities along the chain.

Angular Velocity Demo

Joint Velocity

- The directions of the joint axes \mathbf{a}_{i} form a vector space for the angular velocity $\boldsymbol{\omega}$ of an end-effector:

$$
\boldsymbol{\omega}=\mathbf{a}_{1} \dot{\theta}_{1}+\cdots+\mathbf{a}_{n} \dot{\theta}_{n}
$$

- Here, $\dot{\theta}_{i}$ are the joint speeds in radians per second.

Joint Velocity (cont'd)

- In matrix notation this looks like

$$
\boldsymbol{\omega}=\left(\begin{array}{ccc}
\vdots & & \vdots \\
\mathbf{a}_{1} & \cdots & \mathbf{a}_{n} \\
\vdots & & \vdots
\end{array}\right)\left(\begin{array}{c}
\dot{\theta}_{1} \\
\vdots \\
\dot{\theta}_{n}
\end{array}\right)
$$

- The matrix columns are the n joint axes.

Joint Axis Direction

- Given \mathbf{q}_{i}, link i 's rotation relative to the world frame, the direction of the joint axis is the local rotation axis \mathbf{u}_{i} in world coordinates:

$$
\mathbf{a}_{i}=\mathbf{q}_{i} \mathbf{u}_{i} \mathbf{q}_{i}^{*}
$$

Velocity Constraints

- A velocity constraint is defined by a linear function that maps velocities to vectors.
- The dimension of the resulting vector is the number of constrained DoFs.
- The constraint is satisfied if the function returns the target value (usually zero).

Rotational Axis Constraint

- Constrains the axis of rotation of an endeffector link to some target axis.
- For example, for constraint function
$C(\boldsymbol{\omega})=\left(\boldsymbol{\omega}_{\mathrm{x}}, \boldsymbol{\omega}_{\mathrm{y}}\right)$, imposing $\quad C(\boldsymbol{\omega})=\mathbf{0}$
restricts the axis to the Z -axis.

Constraint Matrix

- A constraint involving a linear function C and target \mathbf{t} can be expressed as

$$
C(\boldsymbol{\omega})=\left(\begin{array}{ccc}
\vdots & & \vdots \\
C\left(\mathbf{a}_{1}\right) & \cdots & C\left(\mathbf{a}_{n}\right) \\
\vdots & & \vdots
\end{array}\right)\left(\begin{array}{c}
\dot{\theta}_{1} \\
\vdots \\
\dot{\theta}_{n}
\end{array}\right)=\mathbf{t}
$$

Free \& Fixed Joint Parameters

- Move the fixed joint parameters over to the right-hand side

$$
\left(\begin{array}{ccc}
\vdots & & \vdots \\
C\left(\mathbf{a}_{l+1}\right) & \cdots & C\left(\mathbf{a}_{n}\right) \\
\vdots & & \vdots
\end{array}\right)\left(\begin{array}{c}
\dot{\theta}_{l+1} \\
\vdots \\
\dot{\theta}_{n}
\end{array}\right)=\mathbf{t}-\left(C\left(\mathbf{a}_{1}\right) \dot{\theta}_{1}+\cdots+C\left(\mathbf{a}_{l}\right) \dot{\theta}_{l}\right)
$$

- Here, only $\dot{\theta}_{l+1}$ to $\dot{\theta}_{n}$ are variables.

Jacobian Matrix

- The remaining matrix expresses the influence of variable joint speeds on the constraint function.
- This is in fact the Jacobian matrix.
- \#rows = \#constrained DoFs.
- \#colums = \#free joint parameters.

No Inverse

- The Jacobian matrix generally does not have an inverse.
- Often the matrix is not square, and thus not invertible.
- Square Jacobians may not be invertible, since they can have dependent columns.

Too Few Variables

- The constraints fix more DoFs than there are variables:

$$
J=\left(\begin{array}{cc}
\vdots & \vdots \\
C\left(\mathbf{a}_{n-1}\right) & C\left(\mathbf{a}_{n}\right) \\
\vdots & \vdots
\end{array}\right)
$$

- Likely, no solution exists. We settle for a best-fit solution.

Too Many Variables

- The constraints fix fewer DoFs than there are variables:

$$
J=\left(\begin{array}{ccc}
\vdots & & \vdots \\
C\left(\mathbf{a}_{n-3}\right) & \cdots & C\left(\mathbf{a}_{n}\right) \\
\vdots & & \vdots
\end{array}\right)
$$

- Infinitely many solutions may exist. We seek the lowest speed solution.

Pseudoinverse

- The Moore-Penrose pseudoinverse J^{+}is

$$
\begin{array}{ll}
\left(J^{\mathrm{T}} J\right)^{-1} J^{\mathrm{T}} & \text { if \#rows } \geq \text { \#colums } \\
J^{\mathrm{T}}\left(J J^{\mathrm{T}}\right)^{-1} & \text { if \#rows } \leq \text { colums }
\end{array}
$$

- Giving:

$$
\left(\begin{array}{c}
\dot{\theta}_{l+1} \\
\vdots \\
\dot{\theta}_{n}
\end{array}\right)=J^{+}\left(\mathbf{t}-\left(C\left(\mathbf{a}_{1}\right) \dot{\theta}_{1}+\cdots+C\left(\mathbf{a}_{l}\right) \dot{\theta}_{l}\right)\right)
$$

Pseudoinverse (cont'd)

- If no solution exists, returns a best-fit (least-squares) solution.
- If infinitely many solutions exist, returns the least-norm (lowest speed) solution.
- If an inverse exists, the pseudoinverse is the inverse.

Computing the Pseudoinverse

- J^{+}can be computed using open-source linear-algebra packages (Eigen, Armadillo+LAPACK).
- Cubic complexity! $\left(O\left(n^{3}\right)\right.$ for n variables)
- Decimate into smaller Jacobians, rather than solve one huge Jacobian.

Gimbal Lock Demo

Positional Error

- Constraint solving happens at sampled intervals.
- Jacobian is falsely assumed to be fixed in-between samples.
- Positional error builds up (drift).

Positional Error (cont'd)

- Correct error by adding a stabilization term to the target vector:

$$
J^{+}\left(\mathbf{t}-\left(C\left(\mathbf{a}_{1}\right) \dot{\theta}_{1}+\cdots+C\left(\mathbf{a}_{l}\right) \dot{\theta}_{l}\right)+\mathbf{s}\right)
$$

Positional Error (cont'd)

- We choose $\mathbf{s}=C\left(\boldsymbol{\omega}_{\text {diff }}\right)$, where $\boldsymbol{\omega}_{\text {diff }}$ is the angular velocity that closes the gap between \mathbf{q}_{n} and \mathbf{q}_{t}, the orientations of resp. end-effector and target.

Positional Error (cont'd)

- A useful approximation for $\boldsymbol{\omega}_{\text {diff }}$ is the vector part of

$$
\beta_{\bar{h}}^{2} \mathbf{q}_{t} \mathbf{q}_{n}{ }^{*}
$$

- Here, h is the time interval.
- Factor $\beta(<1)$ relaxes correction speed.
- N.B.: Mind the extra spin when $\mathbf{q}_{n} \bullet \mathbf{q}_{t}<0$!

Part II: Rigid-Body Constraints

Chasles' Theorem

- A screw is a rotation about a line and a translation along the same line.
- "Any rigid-body displacement can be defined by a screw." (Michel Chasles, 1830)

Chasles' Theorem Demo

Screw Theory

- "By replacing vectors (directions) with Plücker coordinates (lines), point entities (angular velocity, force) transfer to rigid-body entities (twist, wrench)." (Sir Robert Stawell Ball, 1876)

Dual Quaternions

- Quaternion algebra is extended by introducing a dual unit ε.
- Elements are $1, i, j, k, \varepsilon, i \varepsilon, j \varepsilon$, and $k \varepsilon$.
- A dual quaternion is expressed as:

$$
\widehat{\mathbf{q}}=\mathbf{q}+\mathbf{q}^{\prime} \varepsilon
$$

We call \mathbf{q} the real part and \mathbf{q}^{\prime} the dual part.

Dual Quaternions (cont'd)

- In multiplications, the dual unit resolves as $\varepsilon^{2}=0$, giving: $\left(\mathbf{q}_{1}+\mathbf{q}_{1}^{\prime} \varepsilon\right)\left(\mathbf{q}_{2}+\mathbf{q}_{2}^{\prime} \varepsilon\right)$

$$
=\mathbf{q}_{1} \mathbf{q}_{2}+\left(\mathbf{q}_{1} \mathbf{q}_{2}^{\prime}+\mathbf{q}_{1}^{\prime} \mathbf{q}_{2}\right) \varepsilon+0
$$

- Real part is the product of real parts only; it does not depend on dual parts!

Dual Quaternions (cont'd)

- The conjugate of a dual quaternion:

$$
\widehat{\mathbf{q}}^{*}=\left(\mathbf{q}+\mathbf{q}^{\prime} \varepsilon\right)^{*}=\mathbf{q}^{*}+\mathbf{q}^{\prime *} \varepsilon
$$

- Multiplication of a dual quaternion by its conjugate yields its squared magnitude: $\left(\mathbf{q}+\mathbf{q}^{\prime} \varepsilon\right)\left(\mathbf{q}+\mathbf{q}^{\prime} \varepsilon\right)^{*}=\mathbf{q} \mathbf{q}^{*}+\left(\mathbf{q} \mathbf{q}^{\prime *}+\mathbf{q}^{\prime} \mathbf{q}^{*}\right) \varepsilon$

Dual Quaternions (cont'd)

- Unit dual quaternions $(1+0 \varepsilon)$ represent rigid body displacements aka poses.
- The rigid body pose given by unit (real) quaternion \mathbf{q} and translation vector \mathbf{t} is:

$$
\mathbf{q + \frac { 1 } { 2 } \mathbf { t q } \varepsilon \quad \begin{array} { c }
{ \mathbf { t } \text { is considered a pure } } \\
{ \text { imaginary quaternion } } \\
{ \text { (zero scalar part). } }
\end{array}}
$$

Where is the Screw?

- A unit dual quaternion can be written as

$$
\left[\cos \left(\frac{\theta+d \varepsilon}{2}\right), \sin \left(\frac{\theta+d \varepsilon}{2}\right)(\mathbf{u}+\mathbf{v} \varepsilon)\right]
$$

θ is the rotation angle, d is the translation distance, and $\mathbf{u}+\mathbf{v} \varepsilon$ is the screw axis as unit dual vector (Plücker coordinates).

Linear Velocity

- Linear velocity, unlike angular velocity, is bound to a point in space:

Linear Velocity (cont'd)

- Given angular velocity ω, and linear velocity v at point \mathbf{p}, the linear velocity at an arbitrary point \mathbf{x} is $\mathbf{v}+\boldsymbol{\omega} \times(\mathbf{x}-\mathbf{p})$.

Plücker Coordinates

- Angular and linear velocity are combined into a single entity represented by a dual vector (aka Plücker coordinates):

$$
\hat{\mathbf{v}}=\boldsymbol{\omega}+\mathbf{v}^{o} \varepsilon
$$

- Here, \mathbf{v}^{0} is the linear velocity at the origin of the coordinate frame.

Plücker Coordinates Demo

Transforming Plücker Coordinates

- The dual-quaternion sandwich product performs a rigid-body transformation on Plücker coordinates:

$$
\widehat{\mathbf{v}^{\prime}}=\widehat{\mathbf{q}} \hat{\mathbf{v}} \widehat{\mathbf{q}}^{*}
$$

- This transformation preserves magnitude: $\widehat{\mathbf{v}^{\prime}} \bullet \hat{\mathbf{v}^{\prime}}=\hat{\mathbf{v}} \bullet \hat{\mathbf{v}}$

Deja Vu?

- The (combined) velocity of a link is the sum of all joint velocities along the chain.
- The joint axes $\hat{\mathbf{a}}_{i}$ form a vector space for the velocity $\hat{\mathbf{v}}$ of an end-effector:

$$
\hat{\mathbf{v}}=\hat{\mathbf{a}}_{1} \dot{\theta}_{1}+\cdots+\hat{\mathbf{a}}_{n} \dot{\theta}_{n}
$$

- Here, $\dot{\theta}_{i}$ are the revolute and prismatic joint speeds.

Deja Vu? (cont'd)

- For $\widehat{\mathbf{q}}_{i}$, link i 's pose expressed in the world frame, $\widehat{\mathbf{u}}_{i}$, the local joint axis, the joint axis in world coordinates is

$$
\hat{\mathbf{a}}_{i}=\widehat{\mathbf{q}}_{i} \widehat{\mathbf{u}}_{i} \widehat{\mathbf{q}}_{i}{ }^{*}
$$

- For a revolute:

For a prismatic:

$$
\widehat{\mathbf{u}}_{i}=\mathbf{u}_{i}+0 \varepsilon
$$

$$
\widehat{\mathbf{u}}_{i}=0+\mathbf{v}_{i} \varepsilon
$$

Deja Vu? (cont'd)

- To correct the positional error between end-effector and target, we choose the correction velocity $\hat{\mathbf{v}}_{\text {diff }}$ to be the vector part of

$$
\beta \frac{2}{h} \widehat{\mathbf{q}}_{t} \widehat{\mathbf{q}}_{n}{ }^{*}
$$

The Principle of Transference

Angular Entities	Rigid-body	Entities	
Rotation	unit quaternion	Pose (screw)	unit dual quaternion
Angular velocity	3-vector	Combined velocity	dual 3-vector
Direction	unit 3-vector	Line	unit dual 3-vector
Rotation parameter	angle (radians)	Screw parameters	dual angle (radians, meter)
Spherical coordinates (azi, polar)	pair of angles	Denavit- Hartenberg parameters	pair of dual angles

References

- K. Shoemake. Plücker Coordinate Tutorial. Ray Tracing News, Vol. 11, No. 1
- R. Featherstone. Spatial Vectors and Rigid Body Dynamics. http://royfeatherstone.org/spatial.
- L. Kavan et al. Skinning with dual quaternions. Proc. ACM SIGGRAPH Symposium on Interactive 3D Graphics and Games, 2007.
- G. van den Bergen. Math for Game Programmers: Dual Numbers. GDC 2013 Tutorial.

Open-Source Code

- Eigen: A C++ Linear Algebra Library. http://eigen.tuxfamily.org. License: MPL2
- Armadillo: C++ Linear Algebra Library. http://arma.sourceforge.net. License: MPL2
- LAPACK - Linear Algebra PACKage. http://www.netlib.org/lapack. License: BSD
- MoTo C++ template library (dual quaternion code) https://code.google.com/p/motion-toolkit/. License: MIT

Thank You!

My pursuits can be traced on:

- Web: http://www.dtecta.com
- Twitter: @dtecta
- Or just mail me: gino@dtecta.com

