

Math for Game Programmers: Inverse Kinematics Revisited

Gino van den Bergen 3D Programmer (Dtecta) gino@dtecta.com

GAME DEVELOPERS CONFERENCE

MOSCONE CENTER · SAN FRANCISCO, CA MARCH 2-6, 2015 · EXPO: MARCH 4-6, 2015

Uhhh... Inverse Kinematics?

Problem Description

- We have a bunch of rigid bodies aka *links* (aka *bones*).
- Pairs of links are connected by *joints*.
- A joint limits the *degrees of freedom* (DoFs) of one link relative to the other.
- Connection graph is a tree. No loops!

Problem Description (cont'd)

- Let's consider 1-DoF joints only:
 - *Revolute*: single-axis rotation aka *hinge*.
 - *Prismatic*: single-axis translation aka *slider*.
- Positions and velocities of links are defined by the values and speeds of the scalar joint parameters (angles, distances).

Problem Description (cont'd)

Problem Description (cont'd)

- Given some constraints on the poses and velocities of one or more links, compute a vector of joint parameters that satisfies the constraints.
- The constrained links are called *endeffectors*, and are usually (but not per se) the end-links of a linkage.

Free vs. Fixed Joints

- Usually, only a few joints are free. Free joints are available for constraint resolution.
- The other joints are controlled by forward kinematics. Their positions and velocities are fixed at a given instance of time.

Part I: Angular Constraints

Rotations in 3D

- Have three degrees of freedom (DoFs).
- Do not commute: $R_1R_2 \neq R_2R_1$
- Can be parameterized by three angles about predefined axes (Euler angles).
- Angle parameterization is not ideal for doing math (gimbal lock).

Quaternions

• Quaternions extend complex numbers

$$\mathbf{q} = a + b\mathbf{i} + c\mathbf{j} + d\mathbf{k}$$

where *a*, *b*, *c* and *d* are real numbers

- *a* is the real or *scalar* part, and
- (b, c, d) is the imaginary or vector part.

Quaternions (cont'd)

- Quaternions behave as 4D vectors w.r.t. addition and scaling.
- In multiplications, the imaginary units resolve as: $i^2 = j^2 = k^2 = ijk = -1$
- In scalar-vector notation, multiplication is given by: $[s_1, \mathbf{v}_1][s_2, \mathbf{v}_2] =$ $[s_1s_2 - \mathbf{v}_1 \cdot \mathbf{v}_2, s_1\mathbf{v}_2 + s_2\mathbf{v}_1 + \mathbf{v}_1 \times \mathbf{v}_2]$

Quaternion Conjugate

- The conjugate of quaternion **q**, denoted by **q***, is defined by
 (a + bi + cj + dk)* = a bi cj dk
- Multiplication of a quaternion by its conjugate yields its squared magnitude:
 qq* = q*q = a² + b² + c² + d²

Unit Quaternions

- Unit quaternions (points on sphere in 4D) form a multiplicative subgroup.
- A rotation with angle θ about unit vector
 u is represented by unit quaternion

$$\left[\cos\left(\frac{\theta}{2}\right), \, \sin\left(\frac{\theta}{2}\right)\mathbf{u}\right]$$

Rotations using Unit Quaternions

- The so-called sandwich product performs a rotation: v' = q v q*
- The vector **v** is regarded as a pure imaginary quaternion.
- The conjugate is the inverse rotation:
 v = q* v' q

Kinematic Chain

- In a chain of links, r_i is the relative rotation from link *i* to its parent link *i* 1.
- The rotation from a link *i* to the world frame is simply $\mathbf{q}_i = \mathbf{r}_1 \cdots \mathbf{r}_i$, the product of relative rotations in the chain up to link *i*.
- The rotation from link *i* to link *j* is: **q**_j***q**_i
 (even if *i* and *j* are on different chains).

There's a Twist...

- Unit quaternions **q** and -**q** represent the same orientation.
- For computing the rotation q_j*q_i from q_i to q_j, make sure that q_i and q_j point in the same direction (q_i q_j > 0), if necessary, by negating either q_i or q_j.
- Otherwise, $\mathbf{q}_j * \mathbf{q}_i$ takes an extra spin.

MARCH 2-6, 2015 GDCONF.COM

Angular Velocity

- The angular velocity of a rigid body is a 3D vector.
- Its *direction* points along the rotation axis following the right-hand rule.
- Its *magnitude* is the rotational speed in radians per second.

Angular Velocity

- Angular velocity is a proper vector:
- The angular velocity of a link is the sum of all joint velocities along the chain.

Angular Velocity Demo

MARCH 2-6, 2015 GDCONF.COM

Joint Velocity

The directions of the joint axes a_i form a vector space for the angular velocity ω of an end-effector:

$$\boldsymbol{\omega} = \mathbf{a}_1 \dot{\theta}_1 + \dots + \mathbf{a}_n \dot{\theta}_n$$

• Here, $\dot{\theta}_i$ are the joint speeds in radians per second.

Joint Velocity (cont'd)

• In matrix notation this looks like

$$\boldsymbol{\omega} = \begin{pmatrix} \vdots & \vdots \\ \mathbf{a}_1 & \cdots & \mathbf{a}_n \\ \vdots & \vdots \end{pmatrix} \begin{pmatrix} \dot{\theta}_1 \\ \vdots \\ \dot{\theta}_n \end{pmatrix}$$

• The matrix columns are the *n* joint axes.

Joint Axis Direction

Given q_i, link i's rotation relative to the world frame, the direction of the joint axis is the local rotation axis u_i in world coordinates:

$$\mathbf{a}_i = \mathbf{q}_i \mathbf{u}_i \mathbf{q}_i^*$$

Velocity Constraints

- A velocity constraint is defined by a linear function that maps velocities to vectors.
- The dimension of the resulting vector is the number of constrained DoFs.
- The constraint is satisfied if the function returns the target value (usually zero).

Rotational Axis Constraint

- Constrains the axis of rotation of an endeffector link to some target axis.
- For example, for constraint function

 $C(\boldsymbol{\omega}) = (\boldsymbol{\omega}_x, \boldsymbol{\omega}_y), \text{ imposing } C(\boldsymbol{\omega}) = \mathbf{0}$

restricts the axis to the Z-axis.

Constraint Matrix

• A constraint involving a linear function *C* and target t can be expressed as

$$C(\boldsymbol{\omega}) = \begin{pmatrix} \vdots & \vdots \\ C(\mathbf{a}_1) & \cdots & C(\mathbf{a}_n) \\ \vdots & \vdots \end{pmatrix} \begin{pmatrix} \dot{\theta}_1 \\ \vdots \\ \dot{\theta}_n \end{pmatrix} = \mathbf{t}$$

Free & Fixed Joint Parameters

 Move the fixed joint parameters over to the right-hand side

$$\begin{pmatrix} \vdots & \vdots \\ C(\mathbf{a}_{l+1}) & \cdots & C(\mathbf{a}_n) \\ \vdots & \vdots \end{pmatrix} \begin{pmatrix} \dot{\theta}_{l+1} \\ \vdots \\ \dot{\theta}_n \end{pmatrix} = \mathbf{t} - \left(C(\mathbf{a}_1) \dot{\theta}_1 + \cdots + C(\mathbf{a}_l) \dot{\theta}_l \right)$$

• Here, only $\dot{\theta}_{l+1}$ to $\dot{\theta}_n$ are variables.

MARCH 2-6, 2015 GDCONF.COM

Jacobian Matrix

- The remaining matrix expresses the influence of variable joint speeds on the constraint function.
- This is in fact the *Jacobian* matrix.
- #rows = #constrained DoFs.
- #colums = #free joint parameters.

No Inverse

- The Jacobian matrix generally does not have an inverse.
- Often the matrix is not square, and thus not invertible.
- Square Jacobians may not be invertible, since they can have dependent columns.

Too Few Variables

• The constraints fix more DoFs than there are variables:

$$J = \begin{pmatrix} \vdots & \vdots \\ C(\mathbf{a}_{n-1}) & C(\mathbf{a}_n) \\ \vdots & \vdots \end{pmatrix}$$

• Likely, no solution exists. We settle for a best-fit solution.

Too Many Variables

• The constraints fix fewer DoFs than there are variables:

$$J = \begin{pmatrix} \vdots & \vdots \\ C(\mathbf{a}_{n-3}) & \cdots & C(\mathbf{a}_n) \\ \vdots & \vdots \end{pmatrix}$$

• Infinitely many solutions may exist. We seek the lowest speed solution.

Pseudoinverse

- The Moore-Penrose *pseudoinverse* J^+ is $(J^T J)^{-1} J^T$ if #rows \geq #colums $J^T (J J^T)^{-1}$ if #rows \leq #colums
- Giving: $\begin{pmatrix} \dot{\theta}_{l+1} \\ \vdots \\ \dot{\theta}_{m} \end{pmatrix} = J^{+} \left(\mathbf{t} - \left(C(\mathbf{a}_{1}) \dot{\theta}_{1} + \dots + C(\mathbf{a}_{l}) \dot{\theta}_{l} \right) \right)$

Pseudoinverse (cont'd)

- If no solution exists, returns a best-fit (least-squares) solution.
- If infinitely many solutions exist, returns the least-norm (lowest speed) solution.
- If an inverse exists, the pseudoinverse is the inverse.

Computing the Pseudoinverse

- J⁺can be computed using open-source linear-algebra packages (Eigen, Armadillo+LAPACK).
- Cubic complexity! ($O(n^3)$ for *n* variables)
- Decimate into smaller Jacobians, rather than solve one huge Jacobian.

Gimbal Lock Demo

Positional Error

- Constraint solving happens at sampled intervals.
- Jacobian is falsely assumed to be fixed in-between samples.
- Positional error builds up (drift).

Positional Error (cont'd)

 Correct error by adding a stabilization term to the target vector:

Corrects
error
$$J^{+}(\mathbf{t} - (C(\mathbf{a}_{1})\dot{\theta}_{1} + \dots + C(\mathbf{a}_{l})\dot{\theta}_{l}) + \mathbf{s})$$

Positional Error (cont'd)

• We choose $s = C(\omega_{diff})$, where ω_{diff} is the angular velocity that closes the gap between q_n and q_t , the orientations of resp. end-effector ω_{diff} and target.

Positional Error (cont'd)

- A useful approximation for ω_{diff} is the vector part of

$$\beta \frac{2}{h} \mathbf{q}_t \mathbf{q}_n^*$$

- Here, *h* is the time interval.
- Factor β (< 1) relaxes correction speed.
- N.B.: Mind the extra spin when $\mathbf{q}_n \bullet \mathbf{q}_t < 0!$

Part II: Rigid-Body Constraints

Chasles' Theorem

- A screw is a rotation about a line and a translation along the same line.
- "Any rigid-body displacement can be defined by a screw." (Michel Chasles, 1830)

Chasles' Theorem Demo

Screw Theory

• "By replacing vectors (directions) with Plücker coordinates (lines), point entities (angular velocity, *force*) *transfer to rigid-body* entities (twist, wrench)." (Sir Robert Stawell Ball, 1876)

Dual Quaternions

- Quaternion algebra is extended by introducing a dual unit ε .
- Elements are 1, *i*, *j*, *k*, *ε*, *iε*, *jε*, and *kε*.

Dual Quaternions (cont'd)

• In multiplications, the dual unit resolves as $\varepsilon^2 = 0$, giving: $(\mathbf{q}_1 + \mathbf{q}'_1 \varepsilon)(\mathbf{q}_2 + \mathbf{q}'_2 \varepsilon)$

 $= \mathbf{q}_1 \mathbf{q}_2 + (\mathbf{q}_1 \mathbf{q}_2' + \mathbf{q}_1' \mathbf{q}_2) \boldsymbol{\varepsilon} + \mathbf{0}$

 Real part is the product of real parts only; it does not depend on dual parts!

Dual Quaternions (cont'd)

• The *conjugate* of a dual quaternion:

$$\widehat{\mathbf{q}}^* = (\mathbf{q} + \mathbf{q}'\boldsymbol{\varepsilon})^* = \mathbf{q}^* + \mathbf{q}'^*\boldsymbol{\varepsilon}$$

• Multiplication of a dual quaternion by its conjugate yields its squared magnitude: $(\mathbf{q} + \mathbf{q}' \boldsymbol{\varepsilon})(\mathbf{q} + \mathbf{q}' \boldsymbol{\varepsilon})^* = \mathbf{q}\mathbf{q}^* + (\mathbf{q}\mathbf{q}'^* + \mathbf{q}'\mathbf{q}^*)\boldsymbol{\varepsilon}$

Dual Quaternions (cont'd)

- Unit dual quaternions $(1 + 0\varepsilon)$ represent rigid body displacements aka *poses*.
- The rigid body pose given by unit (real) quaternion **q** and translation vector **t** is:

$$\mathbf{q} + \frac{1}{2}\mathbf{t}\mathbf{q}\boldsymbol{\varepsilon}$$

t is considered a *pure* imaginary quaternion (zero scalar part).

Where is the Screw?

• A unit dual quaternion can be written as $\left[\cos\left(\frac{\theta + d\varepsilon}{2}\right), \sin\left(\frac{\theta + d\varepsilon}{2}\right)(\mathbf{u} + \mathbf{v}\varepsilon)\right]$ θ is the rotation angle,

d is the translation distance, and

 $u + v\varepsilon$ is the screw axis as unit dual vector (Plücker coordinates).

Linear Velocity

• Linear velocity, unlike angular velocity, is bound to a point in space:

Linear Velocity (cont'd)

Given angular velocity ω, and linear velocity v at point p, the linear velocity at an arbitrary point x is v + ω × (x - p).

Plücker Coordinates

- Angular and linear velocity are combined into a single entity represented by a dual vector (aka *Plücker coordinates*): $\hat{\mathbf{v}} = \boldsymbol{\omega} + \mathbf{v}^o \boldsymbol{\varepsilon}$
- Here, v^o is the linear velocity at the origin of the coordinate frame.

Plücker Coordinates Demo

Transforming Plücker Coordinates

 The dual-quaternion sandwich product performs a rigid-body transformation on Plücker coordinates:

$$\widehat{\mathbf{v}'} = \widehat{\mathbf{q}} \ \widehat{\mathbf{v}} \ \widehat{\mathbf{q}}^*$$

• This transformation preserves magnitude: $\hat{\mathbf{v}'} \bullet \hat{\mathbf{v}'} = \hat{\mathbf{v}} \bullet \hat{\mathbf{v}}$

Deja Vu?

• The (combined) velocity of a link is the sum of all joint velocities along the chain.

MARCH 2-6, 2015 GDCONF.COM

• The joint axes \hat{a}_i form a vector space for the velocity \hat{v} of an end-effector:

$$\hat{\mathbf{v}} = \hat{\mathbf{a}}_1 \dot{\theta}_1 + \dots + \hat{\mathbf{a}}_n \dot{\theta}_n$$

• Here, $\dot{\theta}_i$ are the revolute and prismatic joint speeds.

Deja Vu? (cont'd)

• For $\hat{\mathbf{q}}_i$, link *i*'s pose expressed in the world frame, $\hat{\mathbf{u}}_i$, the local joint axis, the joint axis in world coordinates is

$$\widehat{\mathbf{a}}_i = \widehat{\mathbf{q}}_i \widehat{\mathbf{u}}_i \widehat{\mathbf{q}}_i^*$$

• For a revolute: For a prismatic: $\widehat{\mathbf{u}}_i = \mathbf{u}_i + \mathbf{0}\varepsilon$ $\widehat{\mathbf{u}}_i = \mathbf{0} + \mathbf{v}_i\varepsilon$

Deja Vu? (cont'd)

- To correct the positional error between end-effector and target, we choose the correction velocity $\hat{v}_{\rm diff}$ to be the vector part of

$$\beta \frac{2}{h} \widehat{\mathbf{q}}_t \widehat{\mathbf{q}}_n^*$$

The Principle of Transference

Angular Entities		Rigid-body Entities	
Rotation	unit quaternion	Pose (screw)	unit dual quaternion
Angular velocity	3-vector	Combined velocity	dual 3-vector
Direction	unit 3-vector	Line	unit dual 3-vector
Rotation parameter	angle (radians)	Screw parameters	dual angle (radians, meter)
Spherical coordinates (azi, polar)	pair of angles	Denavit- Hartenberg parameters	pair of dual angles

References

- K. Shoemake. *Plücker Coordinate Tutorial*. <u>Ray Tracing</u> <u>News, Vol. 11, No. 1</u>
- R. Featherstone. *Spatial Vectors and Rigid Body Dynamics.* <u>http://royfeatherstone.org/spatial</u>.
- L. Kavan et al. Skinning with dual quaternions. *Proc. ACM* SIGGRAPH Symposium on Interactive 3D Graphics and Games, 2007.
- G. van den Bergen. *Math for Game Programmers: Dual Numbers*. <u>GDC 2013 Tutorial</u>.

Open-Source Code

- *Eigen: A C++ Linear Algebra Library*. <u>http://eigen.tuxfamily.org</u>. License: MPL2
- Armadillo: C++ Linear Algebra Library. http://arma.sourceforge.net. License: MPL2
- LAPACK Linear Algebra PACKage. <u>http://www.netlib.org/lapack</u>. License: BSD
- MoTo C++ template library (dual quaternion code) <u>https://code.google.com/p/motion-toolkit/</u>. License: MIT

Thank You!

My pursuits can be traced on:

- Web: <u>http://www.dtecta.com</u>
- Twitter: <u>@dtecta</u>
- Or just mail me: <u>gino@dtecta.com</u>