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Uhhh… Inverse Kinematics? 



Problem Description 

● We have a bunch of rigid bodies aka links 
(aka bones). 

● Pairs of links are connected by joints.  

● A joint limits the degrees of freedom 
(DoFs) of one link relative to the other. 

● Connection graph is a tree. No loops!  

 



Problem Description (cont’d) 

● Let’s consider 1-DoF joints only: 

● Revolute: single-axis rotation aka hinge. 

● Prismatic: single-axis translation aka slider. 

● Positions and velocities of links are 
defined by the values and speeds of the 
scalar joint parameters (angles, distances). 



Problem Description (cont’d) 

Link 

Link 

Revolute 
Joint 



Problem Description (cont’d) 

● Given some constraints on the poses and 
velocities of one or more links, compute a 
vector of joint parameters that satisfies the 
constraints. 

● The constrained links are called end-
effectors, and are usually (but not per se) 
the end-links of a linkage.    



Free vs. Fixed Joints  

● Usually, only a few joints are free. Free 
joints are available for constraint 
resolution. 

● The other joints are controlled by forward 
kinematics. Their positions and velocities 
are fixed at a given instance of time. 



Position and Orientation 

● Each link maintains a pose, i.e. position 
and orientation, relative to its parent. 

● Position is a 3D vector. Orientation is a 
rotation matrix or a quaternion. 

● Position and orientation can be combined 
into a single entity as a dual quaternion. 

 



Dual Quaternions 

● Quaternion algebra is extended by 
introducing a dual unit ε, for which ε2 = 0. 

● Elements are 1, i, j, k, ε, iε, jε, and kε. 

● A dual quaternion is expressed as: 
   𝐪 = 𝐪 + 𝐪′𝜀 
We call 𝐪 the real part and 𝐪′ the dual part. 

 

 



Dual Quaternions (cont’d) 

● Multiplication gives: 𝐪1 + 𝐪1
′ 𝜀 𝐪2 + 𝐪2

′ 𝜀  
 
 = 𝐪1𝐪2 + 𝐪1𝐪2

′ + 𝐪1
′ 𝐪2 𝜀 + 0  

  

● Real part is the product of real parts only; 
it does not depend on dual parts! 
  

 

 



Dual Quaternions (cont’d) 

● Unit dual quaternions represent poses.  

● Given an orientation represented by a 
unit (real) quaternion 𝐪, and a position by a 
3D vector 𝐜, the pose is represented by: 
 

   𝐪 +
1

2
𝐜𝐪𝜀       

 

 

𝐜 is considered a pure 

imaginary quaternion 
(zero scalar part).  



Dual Quaternions (cont’d) 

● The conjugate of a dual quaternion: 
 
  𝐪 ∗ = (𝐪 + 𝐪′𝜀)∗= 𝐪∗ + 𝐪′

∗
𝜀 

 

● The inverse of a unit dual quaternion is its 
conjugate: 𝐪 + 𝐪′𝜀 𝐪 + 𝐪′𝜀 ∗ = 
                       𝐪𝐪∗ + 𝐪𝐪′

∗
+ 𝐪′𝐪∗ 𝜀 = 1 + 0𝜀 

   

 



Dual Quaternions (almost done) 

● Given a pose 𝐪 = 𝐪 + 𝐪′𝜀,  

● The orientation is simply 𝐪 (the real part). 

● The position is given by 2𝐪′𝐪∗. 

● Exercise: Prove that for unit dual 
quaternions, 2𝐪′𝐪∗ has a zero scalar part. 

 
     Hint: 𝐪𝐪∗ + 𝐪𝐪′

∗
+ 𝐪′𝐪∗ 𝜀 = 1 + 0𝜀 

 



Kinematic Chain 

● In a chain of links, 𝐫 𝑖 is the relative pose 

from link i to its parent link i – 1.   

● The pose from a link i to the world frame 
is simply 𝐪 𝑖 = 𝐫 1⋯𝐫 𝑖, the product of all 
relative poses in the chain up to link i. 

● The pose from link i to link j is: 𝐪 𝑗
∗
𝐪 𝑖 

(even if i and j are on different chains). 

 

 



Relative Pose 

● The relative pose is the product of a fixed 
pose and a variable pose: 𝐫 𝑖 = 𝐱 𝑖𝐳 𝑖 

● 𝐱 𝑖 fixes the joint axis relative to the 

parent’s frame. 

● 𝐳 𝑖 represents the joint’s degree of 
freedom. 



Relative Pose (cont’d) 

● 𝐫 𝑖 = 𝐱 𝑖𝐳 𝑖 

● 𝐱 𝑖 (transparent) 
fixes joint axis.  

● 𝐳 𝑖 rotation 
about z-axis. 

𝐱 𝐱 𝑖𝑖 



Relative Pose (cont’d) 

● W.l.o.g., we choose 𝐱 𝑖 such that the joint 

axis is the z-axis of the new frame. 

● For a revolute: 𝐳 𝑖 = cos 𝜃

2
+ sin 𝜃

2
𝑘, 

rotating θ radians about the local z-axis.  

● For a prismatic: 𝐳 𝑖 = 1 +
𝑑

2
𝑘𝜀, 

translating d units along the local z-axis. 



Positional Constraints 

● Find a vector of joint parameters that 
satisfies constraints on the poses of the 
end-effectors. Examples: 

● The feet of a character land firmly on an 
irregular terrain without interpenetration. 

● The gaze of an NPC follows some target. 

● The fingertip of a character presses a button. 

 



Analytical Approach 

● Sometimes joint 
parameters can be 
solved analytically, 
e.g. the position of a 
piston is determined 
by the crank angle.  



Analytical Approach 

● However, polynomials of degree 5 and up 
can generally not be solved analytically. 

● Moreover, analytical solvers often yield 
multiple solutions which is less practical. 

● Can’t get a closest-fit solution if a solution 
does not exists.  



Iterative Approach 

● A constraint solution is approximated by 
taking many steps towards reducing the 
constraint error. 

● Converges to the nearest local minimum, 
which may not be a proper solution (should 
one exist). 



Cyclic Coordinate Descent (CCD) 

● Iteratively solve each joint while keeping 
relative poses between other joints fixed. 

● “Solving” means minimizing some error. 

●  Different strategies: Repeatedly 

● Work from end-effector to base. 

● Work from base to end-effector. 



Cyclic Coordinate Descent 

●  Minimize distance 



Cyclic Coordinate Descent 

●  Minimize distance 

 



Cyclic Coordinate Descent 

●  Minimize distance 

 



Cyclic Coordinate Descent 

●  Minimize distance 

 



Cyclic Coordinate Descent 

●  Minimize distance 

 



Cyclic Coordinate Descent 

● Pros: 

● Easy to implement 

● Linear time complexity (O(n) for n DoFs) 

● Cons:  

● May converge violently (requires relaxation). 

● Not fit for multiple simultaneous constraints. 



Velocity-based IK 

● Satisfy positional constraints by solving 
joint speeds that move the end-effectors 
towards their desired poses. 

● Best solution for interactive animation: 

● Offers control over jerkiness. 

● Ideal for following a moving target. 



Angular Velocity 

● The angular velocity of a rigid body is a 
3D vector. 

● Its direction points along the rotation axis 
following the right-hand rule. 

● Its magnitude is the rotational speed in 
radians per second.  
 



Angular Velocity 

● Angular velocity is a 
proper vector:  

● The angular velocity 
of a link is the sum of 
all joint velocities 
along the chain.  

 



Joint Velocity 

● The directions of the joint axes 𝐚𝑖 form a 
vector space for the angular velocity 𝛚 of 
an end-effector: 

𝛚 = 𝐚1𝜃 1 +⋯+ 𝐚𝑛𝜃 𝑛 

● Here, 𝜃 𝑖 are the joint speeds in radians 
per second. 



Joint Velocity 

● In matrix notation this looks like 
  

𝛚 =
⋮ ⋮
𝐚1 ⋯ 𝐚𝑛
⋮ ⋮

𝜃 1
⋮
𝜃 𝑛

 

● The matrix columns are the n joint axes.  



Joint Axis Direction 

● For 𝐪 𝑖 = 𝐪𝑖 + 𝐪𝑖′𝜀, link i’s pose expressed in 

the world frame, the direction of the joint 
axis is the local z-axis in world coordinates: 
 

𝐚𝑖 = 𝐪𝑖

0
0
1

𝐪𝑖
∗ 



Free & Fixed Joint Parameters 

● Move the fixed joint parameters over to 
the left-hand side  

𝛚− (𝐚1𝜃 1 +⋯+ 𝐚𝑙𝜃 𝑙) =
⋮ ⋮

𝐚𝑙+1 ⋯ 𝐚𝑛
⋮ ⋮

𝜃 𝑙+1
⋮
𝜃 𝑛

 

● Here, only 𝜃 𝑙+1to 𝜃 𝑛 are variables.  



Jacobian Matrix 

● The remaining matrix expresses the 
influence of changing joint speeds on the 
angular velocity of the end-effector (link n). 

● This is in fact the Jacobian matrix. 

● #rows = #constrained DoFs. 

● #colums = #free joint parameters.  

 



No Inverse 

● The Jacobian matrix generally does not 
have an inverse. 

● Often the matrix is not square, and thus 
not invertible. 

● Square Jacobians may not be invertible, 
since they can have dependent columns. 

 



Too Few Variables 

● The constraints fix more DoFs than there 
are variables: 

𝐽 =
⋮ ⋮

𝐚𝑛−1 𝐚𝑛
⋮ ⋮

 

● Likely, no solution exists. We settle for a 
best-fit solution.  



Too Many Variables 

● The constraints fix fewer DoFs than there 
are variables: 

𝐽 =
⋮ ⋮

𝐚𝑛−3 ⋯ 𝐚𝑛
⋮ ⋮

 

● Infinitely many solutions may exist. We 
seek the one with the lowest joint speeds.  



Jacobian Transpose 

● Quick-and-dirty solver:  

𝜃 𝑙+1
⋮
𝜃 𝑛

≅ 𝐽T 𝛚− 𝐚1𝜃 1 +⋯+ 𝐚𝑙𝜃 𝑙  

● Good for getting the right trend, but no 
best-fit and no lowest joint speeds.  



Jacobian Transpose (cont’d) 

● Needs a relaxation factor 𝛽 to home in on 
the sweet spot:  

𝜃 𝑙+1
⋮
𝜃 𝑛

= 𝛽𝐽T 𝛚− 𝐚1𝜃 1 +⋯+ 𝐚𝑙𝜃 𝑙  

● Still, convergence is slow and 
unpredictable.  



Pseudoinverse 

● The Moore-Penrose pseudoinverse 𝐽+ is 

defined as 

𝐽+ = 𝐽T𝐽
−1
𝐽T 

● Giving: 
𝜃 𝑙+1
⋮
𝜃 𝑛

= 𝐽+ 𝛚− 𝐚1𝜃 1 +⋯+ 𝐚𝑙𝜃 𝑙  



Pseudoinverse (cont’d) 

● If no solution exists, returns a best-fit 
(least-squares) solution. 

● If infinitely many solutions exist, returns 
the least-norm (lowest speed) solution. 

● If an inverse exists, the pseudoinverse is 
the inverse.  



Computing the Pseudoinverse 

● 𝐽+can be computed using open-source 

linear-algebra packages (Eigen, Armadillo+ 
LAPACK). 

● Cubic complexity! (𝑂 𝑛3  for n variables) 

● Decimate into smaller Jacobians, rather 
than solve one huge Jacobian.   

 



Orientation Alignment 

● End-effector’s world frame 𝐪 𝑛 is 
constrained to align with a target frame 𝐪 𝑡. 

● For moving targets, end-effector’s angular 
velocity equals the target frame’s: 𝛚𝑛 = 𝛚𝑡. 

● Correct the alignment error by adding a 
correcting angular velocity to the target’s. 

 



Orientation Alignment (cont’d) 

● For aligning an end-effector’s orientation 
to a moving target, solve: 
 

𝜃 𝑙+1
⋮
𝜃 𝑛

= 𝐽+ 𝛚𝑡 − 𝐚1𝜃 1 +⋯+ 𝐚𝑙𝜃 𝑙 −𝛚𝑒  

Corrects 
error 



Orientation Alignment (cont’d) 

● As target velocity 𝛚𝑒, we choose the 
vector part of 𝛽2

ℎ
𝐪𝑛𝐪𝑡

∗. 

● Here, quaternions 𝐪𝑛 and 𝐪𝑡 are the 

orientations of resp. end-effector and 
target, and ℎ is the time interval. 

● Factor 𝛽(< 1) relaxes correction speed. 



There’s a Twist… 

● Quaternions 𝐪 and −𝐪 represent the same 

orientation. 

● For computing 𝛚𝑒, make sure that 𝐪𝑛 and 
𝐪𝑡 point in the same direction (𝐪𝑛 ∙ 𝐪𝑡 > 0). 

● If not, then negate either 𝐪𝑛 or 𝐪𝑡 to take 
the shortest way home.  
 
   

 



Linear Velocity 

● Linear velocity, unlike angular velocity, is 
bound to a point in space: 



Linear Velocity (cont’d) 

● Given angular velocity 𝛚, and linear 
velocity 𝐯 at point 𝐩, the linear velocity at 
an arbitrary point 𝐱 is 𝐯 + 𝛚 × (𝐱 − 𝐩). 

 

𝐩 
𝐱 



Plücker Coordinates 

● Angular and linear velocity of a link are 
combined into a single entity represented 
by a dual vector (aka Plücker coordinates): 

𝐯 = 𝛚 + 𝐯𝑜𝜀 

● Here, 𝐯𝑜 is the linear velocity at the origin 
of the coordinate frame. 



Transforming Plücker Coordinates 

● Plücker coordinates are transformed from 
one coordinate frame to another using the 
dual quaternion “sandwich” product: 

𝐪 𝐯 𝐪 ∗ 

● Returns the image of velocity 𝐯  after rigid 
transformation by unit dual quaternion 𝐪 .  



Deja Vu? 

● The (combined) velocity of a link is the 
sum of all joint velocities along the chain.  

● The joint axes 𝐚 𝑖 form a vector space for 
the velocity 𝐯  of an end-effector: 

𝐯 = 𝐚 1𝜃 1 +⋯+ 𝐚 𝑛𝜃 𝑛 

● Here, 𝜃 𝑖 are the revolute and prismatic 

joint speeds. 

 

 



Deja Vu? (cont’d) 

● For 𝐪 𝑖 = 𝐪𝑖 + 𝐪𝑖′𝜀, link i’s pose expressed in 

the world frame, the joint axis is the local 
z-axis in world coordinates: 

● For a revolute:   For a prismatic: 

𝐚 𝑖 = 𝐪 𝑖

0
0
1

𝐪 𝑖
∗
     𝐚 𝑖 = 𝐪 𝑖

0
0
ε

𝐪 𝑖
∗
  

 

 

 



Deja Vu? (cont’d) 

● End-effector’s world frame 𝐪 𝑛 is 
constrained to lock onto a target frame 𝐪 𝑡. 

● For moving targets, end-effector’s  
velocity equals the target frame’s: 𝐯 𝑛 = 𝐯 𝑡. 

● To correct the error, we add the dual 
vector part of 𝛽2

ℎ
𝐪 𝑛𝐪 𝑡

∗
 to the target velocity. 

 



Emotion FX Demo 



References 

● K. Shoemake. Plücker Coordinate Tutorial. Ray Tracing 
News, Vol. 11, No. 1 

● R. Featherstone. Spatial Vectors and Rigid Body Dynamics. 
http://royfeatherstone.org/spatial.  

● L. Kavan et al. Skinning with dual quaternions. Proc. ACM 
SIGGRAPH Symposium on Interactive 3D Graphics and 
Games, 2007. 

● G. van den Bergen. Math for Game Programmers:  
Dual Numbers. GDC 2013 Tutorial. 
 

 

http://tog.acm.org/resources/RTNews/html/rtnv11n1.html
http://tog.acm.org/resources/RTNews/html/rtnv11n1.html
http://tog.acm.org/resources/RTNews/html/rtnv11n1.html
http://tog.acm.org/resources/RTNews/html/rtnv11n1.html
http://royfeatherstone.org/spatial
http://royfeatherstone.org/spatial
http://royfeatherstone.org/spatial
http://royfeatherstone.org/spatial
http://www.dtecta.com/files/GDC13_vandenBergen_Gino_Math_Tut.pdf


Open-Source Code 

● Eigen: A C++ Linear Algebra Library. 
http://eigen.tuxfamily.org. License: MPL2 

● Armadillo: C++ Linear Algebra Library. 
http://arma.sourceforge.net. License: MPL2 

● LAPACK – Linear Algebra PACKage. 
http://www.netlib.org/lapack. License: BSD 

● MoTo C++ template library (dual quaternion code) 
https://code.google.com/p/motion-toolkit/. License: MIT 
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Thank You! 

My pursuits can be traced on: 

● Web: http://www.dtecta.com 

● Twitter: @dtecta  

● Or just mail me: gino@dtecta.com 
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