
Physics for Game Programmers:
Spatial Data Structures

Gino van den Bergen
gino@dtecta.com

“I feel like a million tonight …
…But one at a time.”

Mae West

Collision Queries

● Find pairs of objects that are colliding
now, …

● … or will collide over the next frame if no
counter action is taken.

● Compute data for response.

Continuous Collision Queries

● Fast moving objects, such as bullets and
photons (for visibility queries), need to be
swept in order to catch all potential hits.

● Querying a scene by casting rays (or
shapes) is an important ability.

Collision Objects

● Static environment (buildings, terrain) is
typically modeled using polygon meshes.

● Moving objects (player, NPCs, vehicles,
projectiles) are typically convex shapes.

● We focus on convex-mesh collisions.
Mesh-mesh is hardly ever necessary.

Convex Shapes

Three Phases

● Broad phase: Determine all pairs of
independently moving objects that
potentially collide.

● Mid phase: Determine potentially
colliding primitives in complex objects.

● Narrow phase: Determine contact
between convex primitives.

Mid Phase

● Complex objects such as triangle meshes
may be composed of lots of primitives.

● Testing all primitives will take too long,
especially if only a few may be colliding.

● How to speed things up? Or rather,
achieve a more output-sensitive solution?

Spatial Coherence

● Expresses the degree in which a set of
primitives can be ordered based on spatial
location.

● Primitives occupy only a small portion of
the total space.

● A location in space is associated with a
limited number of primitives.

Which Is More Coherent?

Divide & Conquer

Capture spatial coherence by using some
divide & conquer scheme:

● Space Partitioning: subdivide space into
convex cells.

● Model Partitioning: subdivide a set of
primitives into subsets and maintain a
bounding volume per subset.

Uniform Grid

● Subdivide a volume into uniform rectangular
cells (voxels).

● Cells need not keep coordinates of their position.

● Position (x, y, z) goes into cell

where ex, ey, ez are the cell dimensions.

      zyx ezeyexkji /,/,/),,(

Uniform Grid (cont’d)

Two alternative strategies:

● Add a primitive to all cells that overlap the prim’s
bounding box. Overlapping boxes must occupy the
same cell.

● Add a primitive to the cell that contains the
center of its box. Neighboring cells need to be
visited for overlapping boxes, but cells contain
fewer objects.

Uniform Grid (cont’d)

● Grids work well for large number of
primitives of roughly equal size and density
(e.g. cloth, fluids).

● For these cases, grids have O(1) memory
and query overhead.

Spatial Hashing

● Same as uniform grid except that the
space is unbounded.

● Cell ID (i, j, k) is hashed to a bucket in a
hash table.

● Neighboring cells can still be visited.
Simply compute hashes for (i±1, j±1,
k±1).

Spatial Hashing (cont’d)

● As for grids, spatial hashing only works
well for primitives of roughly equal size and
density.

● Remote cells are hashed to the same
bucket, so exploitation of spatial coherence
may not be that great.

Binary Space Partitioning

● A BSP is a hierarchical subdivision of
space into convex cells by (hyper)planes.

k-D Trees

● A k-D trees is a BSP with axis-aligned
partitioning planes.

BSP Trees versus k-D Trees

● k-D trees have smaller memory footprints
and faster traversal times per node.

● BSP Trees need fewer nodes to “carve
out” a proper volume representation.

● The volume enclosed by a polygon mesh
can be accurately represented by a BSP.

Point Queries on a BSP

while (!node->isLeaf) {

 node = node->plane.above(p) ?

 node->posChild :

 node->negChild;

}

return node->inside;

Volume Queries on a BSP

● Fat objects may overlap multiple cells, so
multiple root paths need to be traversed.

● Shrink the query object to a point and
dilate the environment by adding the
negate of the query object [Quake2].

● The dilated environment is better known
as Configuration Space Obstacle (CSO).

Exact CSO for a Disk

Approximate CSO for a Disk

Add Auxiliary Bevel Planes

Dynamic Plane-shift BSP Trees

● What if we have query objects with
different sizes?

● Keep the original BSP and offset the
planes while traversing [Melax, MDK2].

● Since obstacles occur both in the + and -
half-space, we offset in both directions.

Bounding Volumes

● Should fit the model as tightly as
possible.

● Overlap tests between volumes should be
cheap.

● Should use a small amount of memory.

● Cost of computing the best-fit bounding
volume should be low.

Bounding Volumes (cont’d)

Good bounding volume types are:

● Spheres

● Axis-aligned bounding boxes (AABBs)

● Discrete-orientation polytopes (k-DOPs)

● Oriented bounding boxes (OBBs)

Bounding Volume Types

Why AABBs?

● Offer a fair trade-off between storage
space and fit.

● Overlap tests are fast.

● Allow for fast construction and update of
bounding volumes.

● Storage requirements can be further
reduced through compression.

Binary AABB Tree

● Each internal node has two children.

● Each leaf node contains one primitive.

● For N primitives we have N leaf nodes and
N – 1 internal nodes (2N – 1 AABBs in
total).

● Best trees need not be, and usually are
not, height-balanced.

Volume Queries on an AABB Tree

● Compute the volume’s AABB in the AABB
tree’s local coordinate system.

● Recursively visit all nodes whose AABBs
overlap the volume’s AABB.

● Test each visited leaf’s primitive against
the query volume.

Sequential Tree Traversal

int i = 0;

while (i != nodes.size()) {

 if (overlap(queryBox, nodes[i].aabb)) {

 if (nodes[i].isLeaf)

 primTest(nodes[i]);

 ++i;

 } else i += nodes[i].skip;

}

Memory Considerations

● Nodes are stored in a single array.

● Each left child is stored immediately to
the right of its parent.

● The skip field stores the number nodes in
the subtree (the number of nodes to skip if
the overlap test is negative).

Ray Cast on an AABB Tree

● Returns the primitive that is stabbed by
the ray earliest.

● Requires a line-segment-versus-box test.

● Each stabbed primitive shortens the ray.

● Traverse the AABB tree testing the AABB
closest to the ray’s source first.

Line-segment vs. Box Test

● Use a SAT testing the box’s three
principal axes and the three cross products
of principal axes and the line segment.

● If the line segment is almost parallel to an
axis then the cross product is close to zero
and the SAT may return false negatives!!!

Line-segment Box Test (cont’d)

● The cross product rejection test has the form

 | rz * cy – ry * cz | > |rz| * ey+ |ry| * ez,

where r is the ray direction, and c and e are resp.
the center and extent of the AABB.

● The rounding noise in the lhs can get greater
than the rhs, resulting in a false negative!!

Line-segment Box Test (cont’d)

● The lhs suffers from cancellation, if c is at some
distance from the origin.

● The solution is to add an upper bound for the
rounding noise to the rhs, which is

 max(|rz * cy|, |ry * cz|)ε,

Here, ε is the machine epsilon of the number type.

Shape Casting on an AABB Tree

● Similar to ray casting but now we need to
find the primitive that is hit by a convex
shape.

● Perform a ray cast on the Minkowski sum
of the node’s AABB and the shape’s box:

 [a, b] – [c, d] = [a - d, b - c]

AABB Tree Construction

● AABB Trees are typically constructed top
down.

● Bottom-up construction may yield good
trees, but takes a lot of processing.

● Start with a set of AABBs of the
primitives.

Top-down Construction

● Compute the AABB of the set of AABBs. This is
the root node’s volume.

● Split the set using a plane. The plane is chosen
according to some heuristic.

● AABBs that straddle the plane are added to the
dominant side. (AABBs of the two sets may
overlap.)

● Repeat until all sets contain one AABB.

Median Split Heuristic

● Compute the bounding
box of the set of AABB
center points.

● Choose the plane that
splits the box in half
along the longest axis.

Median Split Heuristic No Good

● Median splits may not carve out empty
space really well.

Better Splitting Heuristic

● Off-center splits may do better.

Surface Area Heuristic

● Find the splitting plane that minimizes

SA(AABBleft) * Nleft + SA(AABBright) * Nright

● Here, SA(AABB) is the surface area of the
box, and N is the number of primitives.

Surface Area Heuristic (cont’d)

● Determining the best SAH splitting plane
can be computationally expensive.

● Sufficiently-good splitting planes can be
found quickly by using a binning technique:

● Evaluate a pre-defined set of splitting
planes, and pick the best one.

Surface Area Heuristic (cont’d)

● Group primitives per
cell and compute the
AABB of the group.

● Compute AABBleft and
AABBright for each
splitting plane from
these cell AABBs, and
compute their SA.

Top-down Construction Demo

Updating AABB Trees

● AABB trees can be updated rather than
reconstructed for deformable meshes.

● First recompute the AABBs of the leaves.

● Work your way back to the root:
A parent’s box is the AABB of the children’s boxes.

● For extreme deformations reconstruction is
better and may not be that slow [Wald].

Compressed AABB Trees [Gomez]

● Only 6 of the 12 faces of the child AABBs
differ from the parent’s faces.

● Pack the children paired, and only store
the coordinates of these new inner faces.

● For each of the 6 inner faces store a bit to
denote which child it belongs to.

Compressed AABB Trees [Gomez]

● Inner faces are
shared among
children.

● Sharing need not
be even.

Compressed AABB Trees [Gomez]

● Encode each of the 6 inner face coordinates by a
single byte.

● The byte represents the coordinate as a fraction
of the parent’s AABB.

● Lower bounds are rounded down. Upper bounds
are rounded up.

● This reduces the memory footprint from 56 to 16
bytes per primitive.

Boxtree [Zachmann]

● Since the set of primitives is split along
the longest axis, only one of each child’s
faces will differ significantly from its
parent’s.

This face

differs

significantly

from the box’s

parent.

This face is close

to the box’s parent

Boxtree [Zachmann]

● Store only the coordinate for the inner
faces (similar to k-d tree.)

● The other coordinates are inherited from
the parent box.

 Only these

coordinates

are stored.

Boxtree [Zachmann]

The Boxtree (aka Bounding-Interval Hierarchy)
has a few benefits over traditional AABB trees:

● Smaller memory footprint.

● Slightly faster build times.

● Faster traversal times due to the fact that the
number of axes in the SAT can be further reduced.

● Empty space is captured less greedily, so YMMV!

References

● Stefan Gottschalk e.a. OBBTree: A Hierarchical
Structure for Rapid Interference Detection. Proc
SIGGRAPH, 1996

● Gino van den Bergen. Efficient Collision
Detection of Complex Deformable Models using
AABB Trees. JGT, Vol. 2, No. 4, 1997

● Stan Melax. Dynamic Plane Shifting BSP
Traversal. Proc. Graphics Interface, 2000

References

● Ingo Wald. On Fast Construction of SAH Based
Bounding Volume Hierarchies. Proc. Eurographics,
2007

● Miguel Gomez. Compressed Axis-Aligned
Bounding Box Trees. Game Programming Gems 2,
2001

● Gabriel Zachmann. Minimal Hierarchical Collision
Detection. Proc. VRST, 2002.

Thank You!

My pursuits can be traced on:

● Web: http://www.dtecta.com

● Twitter: @dtecta

● Or just mail me…

http://www.dtecta.com/

