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“I feel like a million tonight … 
…But one at a time.” 

 

Mae West 

 



Collision Queries 

● Find pairs of objects that are colliding 
now, … 

● … or will collide over the next frame if no 
counter action is taken. 

● Compute data for response. 



Continuous Collision Queries 

● Fast moving objects, such as bullets and 
photons (for visibility queries), need to be 
swept in order to catch all potential hits. 

● Querying a scene by casting rays (or 
shapes) is an important ability. 



Collision Objects 

● Static environment (buildings, terrain) is 
typically modeled using polygon meshes. 

● Moving objects (player, NPCs, vehicles, 
projectiles) are typically convex shapes. 

● We focus on convex-mesh collisions. 
Mesh-mesh is hardly ever necessary. 



Convex Shapes 



Three Phases 

● Broad phase: Determine all pairs of 
independently moving objects that 
potentially collide.  

● Mid phase: Determine potentially 
colliding primitives in complex objects.  

● Narrow phase: Determine contact 
between convex primitives. 

 



Mid Phase 

● Complex objects such as triangle meshes 
may be composed of lots of primitives. 

● Testing all primitives will take too long, 
especially if only a few may be colliding. 

● How to speed things up? Or rather, 
achieve a more output-sensitive solution? 

 



Spatial Coherence 

● Expresses the degree in which a set of 
primitives can be ordered based on spatial 
location. 

● Primitives occupy only a small portion of 
the total space. 

● A location in space is associated with a 
limited number of primitives. 

 



Which Is More Coherent? 



Divide & Conquer 

Capture spatial coherence by using some 
divide & conquer scheme: 

● Space Partitioning: subdivide space into 
convex cells.  

● Model Partitioning: subdivide a set of 
primitives into subsets and maintain a 
bounding volume per subset. 

 

 



Uniform Grid 

● Subdivide a volume into uniform rectangular 
cells (voxels). 

● Cells need not keep coordinates of their position. 

● Position (x, y, z) goes into cell  
 
 
 
where ex, ey, ez are the cell dimensions. 
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Uniform Grid (cont’d) 

Two alternative strategies: 

● Add a primitive to all cells that overlap the prim’s 
bounding box. Overlapping boxes must occupy the 
same cell. 

● Add a primitive to the cell that contains the 
center of its box. Neighboring cells need to be 
visited for overlapping boxes, but cells contain 
fewer objects. 

 



Uniform Grid (cont’d) 

● Grids work well for large number of 
primitives of roughly equal size and density 
(e.g. cloth, fluids). 

● For these cases, grids have O(1) memory 
and query overhead. 

 



Spatial Hashing 

● Same as uniform grid except that the 
space is unbounded. 

● Cell ID (i, j, k) is hashed to a bucket in a 
hash table. 

● Neighboring cells can still be visited. 
Simply compute hashes for (i±1, j±1, 
k±1).  

 



Spatial Hashing (cont’d) 

● As for grids, spatial hashing only works 
well for primitives of roughly equal size and 
density.  

● Remote cells are hashed to the same 
bucket, so exploitation of spatial coherence 
may not be that great. 

 



Binary Space Partitioning 

● A BSP is a hierarchical subdivision of 
space into convex cells by (hyper)planes. 



k-D Trees 

● A k-D trees is a BSP with axis-aligned 
partitioning planes.  



BSP Trees versus k-D Trees 

● k-D trees have smaller memory footprints 
and faster traversal times per node. 

● BSP Trees need fewer nodes to “carve 
out” a proper volume representation. 

●  The volume enclosed by a polygon mesh 
can be accurately represented by a BSP.  



Point Queries on a BSP 

while (!node->isLeaf) { 

    node = node->plane.above(p) ? 

           node->posChild :  

           node->negChild; 

} 

return node->inside; 



Volume Queries on a BSP 

● Fat objects may overlap multiple cells, so 
multiple root paths need to be traversed. 

● Shrink the query object to a point and 
dilate the environment by adding the 
negate of the query object [Quake2]. 

● The dilated environment is better known 
as Configuration Space Obstacle (CSO). 



Exact CSO for a Disk  



Approximate CSO for a Disk 



Add Auxiliary Bevel Planes 



Dynamic Plane-shift BSP Trees 

● What if we have query objects with 
different sizes? 

●  Keep the original BSP and offset the 
planes while traversing [Melax, MDK2]. 

● Since obstacles occur both in the + and - 
half-space, we offset in both directions. 

 

 



Bounding Volumes 

● Should fit the model as tightly as 
possible. 

● Overlap tests between volumes should be 
cheap. 

● Should use a small amount of memory. 

● Cost of computing the best-fit bounding 
volume should be low. 



Bounding Volumes (cont’d) 

Good bounding volume types are: 

● Spheres 

● Axis-aligned bounding boxes (AABBs) 

● Discrete-orientation polytopes (k-DOPs) 

● Oriented bounding boxes (OBBs) 

 



Bounding Volume Types 



Why AABBs? 

● Offer a fair trade-off between storage 
space and fit. 

● Overlap tests are fast. 

● Allow for fast construction and update of 
bounding volumes. 

● Storage requirements can be further 
reduced through compression. 

 



Binary AABB  Tree 

● Each internal node has two children. 

● Each leaf node contains one primitive. 

● For N primitives we have N leaf nodes and 
N – 1 internal nodes (2N – 1 AABBs in 
total). 

● Best trees need not be, and usually are 
not, height-balanced.  



Volume Queries on an AABB Tree 

● Compute the volume’s AABB in the AABB 
tree’s local coordinate system. 

● Recursively visit all nodes whose AABBs 
overlap the volume’s AABB.  

● Test each visited leaf’s primitive against 
the query volume. 

 



Sequential Tree Traversal 

int i = 0;  

while (i != nodes.size()) { 

    if (overlap(queryBox, nodes[i].aabb)) { 

        if (nodes[i].isLeaf) 

    primTest(nodes[i]); 

    ++i; 

    } else i += nodes[i].skip; 

} 



Memory Considerations 

● Nodes are stored in a single array. 

● Each left child is stored immediately to 
the right of its parent. 

● The skip field stores the number nodes in 
the subtree (the number of nodes to skip if 
the overlap test is negative). 



Ray Cast on an AABB Tree 

● Returns the primitive that is stabbed by 
the ray earliest. 

● Requires a line-segment-versus-box test. 

● Each stabbed primitive shortens the ray. 

● Traverse the AABB tree testing the AABB 
closest to the ray’s source first. 

 

 



Line-segment vs. Box Test 

● Use a SAT testing the box’s three 
principal axes and the three cross products 
of principal axes and the line segment. 

● If the line segment is almost parallel to an 
axis then the cross product is close to zero 
and the SAT may return false negatives!!! 

 



Line-segment Box Test (cont’d) 

● The cross product rejection test has the form 
 

 | rz * cy – ry * cz |  >  |rz| * ey+ |ry| * ez, 
 
where r is the ray direction, and c and e are resp. 
the center and extent of the AABB. 

● The rounding noise in the lhs can get greater 
than the rhs, resulting in a false negative!! 



Line-segment Box Test (cont’d) 

● The lhs suffers from cancellation, if c is at some 
distance from the origin. 

●  The solution is to add an upper bound for the 
rounding noise to the rhs, which is 
  
  max(|rz * cy|, |ry * cz|)ε, 
  
Here, ε is the machine epsilon of the number type. 



Shape Casting on an AABB Tree 

● Similar to ray casting but now we need to 
find the primitive that is hit by a convex 
shape. 

● Perform a ray cast on the Minkowski sum 
of the node’s AABB and the shape’s box: 
 
 [a, b] – [c, d] = [a - d, b - c] 



AABB Tree Construction 

● AABB Trees are typically constructed top 
down. 

● Bottom-up construction may yield good 
trees, but takes a lot of processing. 

● Start with a set of AABBs of the 
primitives.  

 

 



Top-down Construction 

● Compute the AABB of the set of AABBs. This is 
the root node’s volume. 

● Split the set using a plane. The plane is chosen 
according to some heuristic. 

● AABBs that straddle the plane are added to the 
dominant side. (AABBs of the two sets may 
overlap.)  

● Repeat until all sets contain one AABB.  

 



Median Split Heuristic 

● Compute the bounding 
box of the set of AABB 
center points. 

● Choose the plane that 
splits the box in half 
along the longest axis. 



Median Split Heuristic No Good 

● Median splits may not carve out empty 
space really well. 



Better Splitting Heuristic 

● Off-center splits may do better. 



Surface Area Heuristic 

● Find the splitting plane that minimizes 
 
SA(AABBleft) * Nleft + SA(AABBright) * Nright  

 

● Here, SA(AABB) is the surface area of the 
box, and N is the number of primitives. 



Surface Area Heuristic (cont’d) 

● Determining the best SAH splitting plane 
can be computationally expensive. 

● Sufficiently-good splitting planes can be 
found quickly by using a binning technique: 

● Evaluate a pre-defined set of splitting 
planes, and pick the best one. 

 



Surface Area Heuristic (cont’d) 

● Group primitives per 
cell and compute the 
AABB of the group. 

● Compute AABBleft and 
AABBright for each 
splitting plane from 
these cell AABBs, and 
compute their SA. 

 



Top-down Construction Demo 



Updating AABB Trees 

● AABB trees can be updated rather than 
reconstructed for deformable meshes. 

● First recompute the AABBs of the leaves. 

● Work your way back to the root:  
A parent’s box is the AABB of the children’s boxes.  

● For extreme deformations reconstruction is 
better and may not be that slow [Wald]. 

 

 



Compressed AABB Trees [Gomez] 

● Only 6 of the 12 faces of the child AABBs 
differ from the parent’s faces.  

● Pack the children paired, and only store 
the coordinates of these new inner faces.  

● For each of the 6 inner faces store a bit to 
denote which child it belongs to. 

 

 



Compressed AABB Trees [Gomez] 

● Inner faces are 
shared among 
children. 

 

● Sharing need not 
be even. 



Compressed AABB Trees [Gomez] 

● Encode each of the 6 inner face coordinates by a 
single byte. 

● The byte represents the coordinate as a fraction 
of the parent’s AABB. 

● Lower bounds are rounded down. Upper bounds 
are rounded up. 

● This reduces the memory footprint from 56 to 16 
bytes per primitive.  

 

 



Boxtree [Zachmann]  

● Since the set of primitives is split along 
the longest axis, only one of each child’s 
faces will differ significantly from its 
parent’s. 

 

 

This face 

differs 

significantly 

from the box’s 

parent. 

This face is close 

to the box’s parent 



Boxtree [Zachmann] 

● Store only the coordinate for the inner 
faces (similar to k-d tree.) 

● The other coordinates are inherited from 
the parent box. 

 Only these 

coordinates 

are stored.   



Boxtree [Zachmann] 

The Boxtree (aka Bounding-Interval Hierarchy) 
has a few benefits over traditional AABB trees: 

● Smaller memory footprint. 

● Slightly faster build times. 

● Faster traversal times due to the fact that the 
number of axes in the SAT can be further reduced. 

● Empty space is captured less greedily, so YMMV!   
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Thank You! 

My pursuits can be traced on: 

● Web: http://www.dtecta.com 

● Twitter: @dtecta 

● Or just mail me… 
 
 
 

http://www.dtecta.com/

